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Abstract—Motivated by the challenges of edge inference, we
study a variant of the cascade bandit model in which each
arm corresponds to an inference model with an associated
accuracy and error probability. We analyse four decision-making
policies—Explore-then-Commit, Action Elimination, Lower Con-
fidence Bound (LCB), and Thompson Sampling—and provide
sharp theoretical regret guarantees for each. Unlike in classical
bandit settings, Explore-then-Commit and Action Elimination
incur suboptimal regret because they commit to a fixed ordering
after the exploration phase, limiting their ability to adapt. In
contrast, LCB and Thompson Sampling continuously update
their decisions based on observed feedback, achieving constant
O(1) regret. Simulations corroborate these theoretical findings,
highlighting the crucial role of adaptivity for efficient edge
inference under uncertainty. |

Index Terms—cascade bandits

I. INTRODUCTION

The increasing penetration of Artificial Intelligence (AI)
and the Internet of Things (IoT) across diverse application
domains has led to a growing demand for Mobile Edge
Computing (MEC). To achieve faster inference from models
trained for specific tasks, it is essential to host them at the
edge, thereby reducing latency and improving responsiveness.
In this work, we adopt the approach of using a collection
of simpler, task-specific models organized in a cascade to
perform inference at the edge. A user submits an inference
request to the edge, thereby alleviating the computational
burden on the User Equipment (UE).

Our system consists of multiple cascaded machine learning
(ML) models, each paired with a dedicated scoring module, as
shown in Fig. |1} following a design similar to [1]]. For a given
query, each ML model generates an output, which is then
evaluated by its corresponding scoring module. The scoring
module maps the model’s output to a binary decision: a value
of one indicates that the response is capable of satisfying the
user’s query, while a value of zero indicates otherwise. If the
scoring module outputs one, the response from that ML model
is forwarded to the user, who subsequently provides binary
feedback indicating whether the response is satisfactory (one)
or unsatisfactory (zero). Conversely, if the scoring module
outputs zero, the query is passed to the next ML model in
the cascade. This process continues until a scoring module
outputs one or until all scoring modules return zero. In the
latter case, the cascade model is unable to satisfy the user’s
query.

A critical consideration in our model is that a scoring
module’s output of 1 does not guarantee a satisfactory user
experience, as the user may still provide feedback of 0. We
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Fig. 1: Cascade ML models with scoring modules
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account for this by modeling a stochastic error probability
for each scoring module. This error is only detectable when a
scoring module returns a 1, but the user’s subsequent feedback
is 0. The reward obtained in this setting is defined as 1 if
the user feedback is satisfactory, and O if the feedback is
unsatisfactory or if the system fails to serve the request. The
central objective of this work is to determine the optimal
ordering of the ML models within the cascade so as to
maximize the total reward or, equivalently, to minimize the
regret, defined as the difference between the reward of the
policy under consideration and that of the static optimal
policy.

We model our edge inference setup as a cascade of ML
models, each paired with a scoring module as a cascade bandit
problem with feedback. Each model—scorer pair is treated as
a bandit arm, and the system output corresponds to the first
model in the cascade whose scorer outputs one. This setting is
closely related to the cascade bandit framework [2]], [3], where
a list of items is presented to a user and a reward is obtained if
an item is clicked. In our case, the agent selects the first model
with a positive score, presents its response, and receives binary
user feedback: one if satisfactory, zero otherwise. If all scorers
output zero, the request is unserved, analogous to the “no-
click” outcome in cascade bandits. Unlike [4], which studies
best-arm identification, we focus on regret minimisation; and
unlike [5], our feedback is immediate rather than randomly
delayed.

Our model differs from the conventional cascade bandit
setting in that the reward depends directly on the order of
models in the cascade, unlike the standard setup, where order
does not affect slot reward. It is also related to cost-aware
cascading bandits [6]—[9]], where ordering impacts the total
reward due to examination costs. The closest prior work is
[10], where an agent presents a list of items and optimises the
order to maximise reward. While our LCB algorithm differs
from their UCB variant, we adapt their theoretical techniques
and further leverage results from [11]-[14] to establish sharp
regret guarantees.

The key contributions of this work are as follows. We show
that any policy which becomes static after a certain number



of time slots—such as explore-and-commit algorithms—will
incur a regret of order Q(logT). We then analyze the per-
formance of the Lower Confidence Bound (LCB) algorithm
and the Thompson Sampling algorithm in our cascade ban-
dit setting, and demonstrate that both achieve O(1) regret.
Furthermore, we validate these theoretical results through
extensive simulations, showing strong consistency between
the theoretical guarantees and empirical performance.

II. PROBLEM SETUP

We consider a K-arm cascade bandit problem, where the
set of arms is denoted by [K]| = {1,2,..., K}. Each arm
produces a binary output independently of the others. Let
X;(t) denote the output of arm ¢ at time slot ¢ (representing
the scoring module’s decision), where {X;(t)}:>1 are ii.d.
Bernoulli random variables with mean p; = E[X;(¢)].

At each time slot ¢, the learner selects an ordering of the
arms, denoted by £; = (lgt), lét), . ,l%)), where l§t) denotes
the arm placed in position j of the cascade. The cascade is
traversed sequentially in this order until the first arm that
outputs one is encountered. Formally, the selected arm index
at time t is [; = min{j € [K] : X, (t) = 1}, with the
convention that I, = oo if all arms outf)ut Zero.

The response of the selected arm lg) is shown to the user,
who provides feedback Y}Y)(t) € {0,1} indicating whether

the displayed result was relevant. The user feedback is treated
as the reward in slot ¢. If I; = oo, no arm is displayed and the
reward is zero. An arm 1 is thus observed only if X;(t) =1
and all arms preceding it in the ordering £, output zero.

An error is said to occur if X;(t) = 1 and Y;(¢) = 0.
These errors are stochastic, with error probability defined as
pi =P(Y;(t) =0 X;(t) =1), Vie [K]. Without loss of
generality, we assume the arms are indexed such that p; <
p2 < --- < pg. For notational convenience, we also define
the gaps A; = p; —p;—1 for2 <i < K.

The goal is to maximize the cumulative reward, or equiva-
lently, minimize the cumulative regret, by dynamically adapt-
ing the ordering of the arms in the cascade. Let £* =
(11,15, ..., 15 ) denote the optimal ordering of the arms, which
sorts arms in increasing order of their error probabilities.
Furthermore, let [, (i) denote the position of arm 7 in the
ordering L;. The regret of a policy then quantifies the expected
reward loss incurred relative to always playing L£*.

We define the expected reward of a cascade model when
the arms are ordered according to the ordering £ =

(lhlg, N ,lK) as
K i—1
e = Z(l _plz:):u’li, H(l - :ulj)'
i=1 j=1

This expression reflects that the i-th arm in the ordering
contributes to the reward only if all preceding arms 1,...,7—1
fail to produce an output 1, which occurs with probability
H;;ll(l — ;). Given that arm i is shown, it produces a
satisfactory feedback with probability (1 — p;, ), and the event
of the arm being triggered occurs with probability y;,. Hence,

the summation accounts for the expected contribution of each
arm to the overall reward under ordering L.

We define the suboptimality gap of an ordering L as
A r = 1~ —rr, which quantifies the loss in expected reward
when using £ instead of the optimal ordering L£*. For each
arm i, let M; be the set of all orderings starting with 4, and
define A; = max,em, A, as the maximum suboptimality
incurred by choosing 7 as the first arm. The largest such value
across arms, Am(m = max; Ai, represents the worst-case loss
from starting with a poor arm, while the smallest nonzero gap,
Amm =mingx,- A ., captures how hard it is to distinguish
the optimal ordering from its closest suboptimal alternative.

Regret is defined as the difference in expected reward
between the optimal policy and the policy under consideration.
Let R™(T) represent the expected regret of policy 7 until time
T, and let R denote the expected regret incurred in slot ¢:

’R? =Trx —Tp

T
R™(T) =) R}
t=1

t

The objective is to select the order of arms L in each round
to minimize the cumulative regret. This essentially means we
want to find a policy that, over time, consistently chooses an
arm ordering that is as close as possible to the optimal one.

III. RESULTS

In this section, we will first define the optimal static policy
for our problem and then introduce several online algorithms
designed to minimise regret. These algorithms—Explore and
Commit (EC), Action Elimination (AE), Lower Confidence
Bound (LCB), and Thompson Sampling (TS) — each come
with specific performance guarantees.

A. Static Optimal Policy

Theorem 1. The optimal static policy will order the arms in
increasing order of their error probabilities (p;)

The proof of Theorem [I]is provided in the Appendix [15]].

Remark 1. The optimal ordering of arms is independent of
their means (;), which are used for sampling. Instead, the
ordering relies exclusively on the probability of error (p;),
meaning arms with a lower error rate are given priority and
positioned first

B. Explore and Commit

The Explore and Commit (EC) algorithm, formally de-
scribed in Algorithm 1} is a two-phase strategy designed to
balance exploration with exploitation in the cascade bandit
setting. It begins with an exploration phase, where each arm
is pulled an equal number of times in order to estimate its
probability of error. The numlkéelr Ozf" pulls per arm is defined as

og
2

N = max; n;, where n; = [v] , and the total exploration

period lasts for TP¢ = NK slots. During this phase, the
algorithm cycles through the arms in a rotating order, ensuring

that each arm appears in every position of the cascade. At



each time slot, the cascade presents the output of the first
triggered arm to the user, whose feedback is then used to
update the empirical error probability of the selected arm and
to compute lower confidence bounds on these estimates. Once
the exploration phase is complete, the algorithm enters the
commit phase, where the arms are permanently ordered in
ascending order of their estimated error probabilities. This
committed ordering is then used for the remainder of the
horizon.

Algorithm 1: Explore and Commit
Input: A;, T, p;
Output: Ordered list £

Initialize: £; = random order of arms, ¢t = 1
16 log T‘l
A?l‘i

N = max;[
Explore:
for t < NK do
Order arms according to £,
The cascade model shows the result of arm I; to
the user
Feedback Y7, (t) is observed
8 | foric [K]do

A B W N =

=

9 Sl(t) :Si(t—].)'f‘]].{izjt}

0 || B0 = { X Lmny (1= Vi) } /S0
R 2log T

1 Li(t) = pi(t) = \/ 5.9

12 end

13 £t+1 = (lét)7 lf(st)7 e ’l%)7 l§t))

14 t++

15 end

16 Commit:
17 L£'= List arms in ascending order of L;(t — 1)
18 for t <T do

19 L=L
20 t++
21 end

Lemma 1. The probability that Algorithm [I] selects a subop-
timal ordering in the commit phase is bounded by

P(L: # LY) < % + I;—j.

The proof of Lemma [I] is provided in the Appendix [13].

Theorem 2. The regret obtained by Algorithm || satisfies
REC(T) = O(log T).

Proof. The total regret can be decomposed into contributions
from the exploration phase and the commit phase:

TFC T
RPCT) =D B[R+ Y P(Li#LY)AL,.
t=1 t=TEFC+1

Using Lemma [T} we obtain

_ - K K2
RPC(T) < NK Ay + TA o ( ) :

R

Since N = O(logT), the first term scales as O(logT'), and
the second term is asymptotically negligible. Hence,

REC(T) = O(log T).

O

Theorem 3. The regret of Algorithm [l is lower bounded as
REC(T) = Q(log T).

The proof of Theorem [3]is provided in Appendix [15].

However, a key limitation of EC is that the required number
of pulls N depends on the gap parameters A;, which are
generally unknown in practice, making the algorithm difficult
to implement in real-world settings. This naturally motivates
the use of adaptive strategies such as Action Elimination,
which overcome this drawback by eliminating suboptimal
arms based on observed feedback without requiring prior
knowledge of A;.

C. Action Elimination

In this subsection, we analyse the Action Elimination (AE)
algorithm, formally defined in Algorithm [2| The algorithm
maintains two disjoint sets of arms: an active set A;, con-
taining arms that are not yet sufficiently explored, and an
inactive set By, with A; N By = &. Initially, A; = [K] and
B: = @. Let L4, and Lp, denote the ordered lists of active
and inactive arms, respectively. If an arm is removed from
A, the size of £ 4, decreases but the relative ordering among
the remaining active arms is preserved, while £g, may be
reordered when new arms are added. The overall ortdering £,
is formed by concatenating £ 4, and Lg,. To ensure that every
active arm continues to receive exploration opportunities, £ 4,
is rotated in a round-robin manner across slots, whereas L,
is maintained in ascending order of LCB values.

While |A;] > 1 (active phase), the algorithm updates
empirical error probabilities and their confidence intervals
(LCB and UCB). Arms are eliminated from .4; and perma-
nently added to B; whenever their confidence intervals no
longer overlap with others. Once only one arm remains active
(commit phase), all arms are ordered by LCB values, and
this final order is fixed for the rest of the horizon. Thus, AE
progressively eliminates suboptimal arms while refining the
cascade ordering.

Unlike the Explore and Commit (EC) algorithm, which
explores uniformly for a fixed budget before committing,
AE adaptively eliminates inferior arms as soon as enough
evidence is gathered. This reduces unnecessary exploration
and can yield tighter regret guarantees.

For the analysis, we introduce the following notations. Let
Al = min{p; — pi—1, pi+1 — p;} denote the minimum gap in
error probability that distinguishes arm ¢ from its immediate
neighbors. Define N; as the number of pulls required for
arm ¢ to collect 16;,_§T feedback samples when placed at
the head of the cascade, and let N;(¢) denote the number of
times arm ¢ has occupied the first position up to time ¢. Since
Algorithm[Z]rotates arms in a round-robin fashion, each active
arm is guaranteed opportunities to accumulate these samples.




Algorithm 2: Action elimination

Output: Ordered list L

1 Initialize A; = {1,2,--- , K}, By = {} £1 = random
order of arms, t =1, L4, = L1, L, = (),
2 for t <T do
3 Order arms as in list £;
4 The cascade model shows the result of arm I; to
the user
5 Feedback of result Y7, (t) is observed
6 for i € [K] do
7 Si(t):S'(tfl)‘i’]]-{i—It}
s || ) = {Xho Ly (1= Vi) } /Si0)
9 Li(t):ﬁi(t)*\/%
10 Ui(t) = pi(t) + \/ *5%
1 end
12 if [L;(t),U;(t)]N[L;(t),U;(t)] = ¢,Vi # j then
13 A1 = A /{5}
14 ‘CAH—l = ‘CAt/{]}
15 Bt+1:BtU{j}
16 end
17 | if [A;1| > 1 then
18 L, = (3005 1% G
19 Lp,,, = ascending order over L;(t), i € By
20 Lt-‘rl = (‘CAt+1 ’ £8t+1)
21 end
22 else
23 ‘ L:+1 = ascending order over L;(t)
24 end
25 t++
26 end

Let T2 represent the time at which the active phase ends.
Finally, define the event &; as

& = {‘ﬁz(t) —pil <eilt), W}7
where €;(t) = 23105)T
¢ has been observed up to time t.

and S;(¢) is the number of times arm

Theorem 4. The regret obtained by Algorithm 2| is

RAE(T) = O(log T).
Proof.
TAE T
RAP(T) <) E[Ry] > P(L# LA s

t=1 t=TAP+1

(0) & - KA KA

< max max

< ;E[M]m +
K 16logT . 2KA

where (a) is obtained by using Lemma [2| and Lemma O

Lemma 2. The probability of Algorithm |2| choosing a sub-
optimal ordering in the commit phase is bounded as follows

(‘Ct#ﬁ ) T2

Lemma 3. For Algorithm[2} regret in active phase is bounded
as follows

Amax

|/\
I Mx
[>1

Lemma 4. Let f(t) be aﬁmction of t such that 0 < f(t) <t
Then, for constants oy, g, a3 > 0, we have

a1 f(t) + age 3O (1 — £(1)) = Q(log t).
The proof of Lemma 2] 3] {is provided in the Appendix [15]].
Theorem 5. The regret of Algorithm [2| is lower bounded as
RAE(T) = Q(log(T)).

Proof. Let § denote the probability that the algorithm commits
to a sub-optimal ordering, and let TAF represent the number
of rounds spent in the active phase before committing.

By results on best arm identification with fixed confidence
in the full-information setting [[16], the expected length of the
active phase must satisfy

E[T*"] > B'log(5),

for some constant 5’ > 0.

An important property of Algorithm [2]is that all arms in the
active set 4, are explored in a round-robin manner through
the orderings L 4,. The algorithm remains in the active phase
as long as at least two arms are active. Consequently, the
maximum number of times any single ordering can be selected
is TSAE /2, which implies that a sub-optimal ordering is chosen
in at least half of the slots. This structural property of the
algorithm directly contributes to the regret incurred during
the active phase. Therefore,
E[TAP 1 <
% §ﬂ/ log(%) Amin-

After the active phase, if the commit phase chooses a sub-
optimal ordering (which happens with probability at least ¢),
regret continues to accumulate linearly with rate A;,. Thus,
the total regret satisfies

R(T;AE) Z Amin Z

T
RA(T) > R(IM)+ ) 6A
=TAP+1
> %B’ log (%) Amin + (T — TAF — 1)5A i
ey

Finally, applying Lemma {] to yields the claimed lower
bound,

RAZ(T) = Q(log(T)).



Remark 2. From the lower bound analysis, we can conclude
that any policy that commits after a certain exploration period
will necessarily incur a regret of order Q(logT).

D. LCB

In this subsection, we analysed the Lower Confidence
Bound (LCB) algorithm, formally described in Algorithm
The key idea of LCB is to order the arms at each round
according to their estimated error probabilities, adjusted by a
confidence term that encourages exploration. Initially, each
arm is pulled until at least one user feedback is obtained
to ensure a valid estimate. At every round t, the arms are
ranked in ascending order of their lower confidence bounds

L;(t), defined as the empirical error estimate p;(¢) reduced by
2logt

a confidence margin /575, where S;(t) is the number of
times feedback for arm 7 has been observed. This construction
balances exploration and exploitation by prioritising arms that
either appear to have lower error probability or are still under-
explored. Over time, the ordering of arms converges toward
the optimal cascade order as the confidence intervals shrink
with more observations.

Algorithm 3: LCB
Output: Ordered list £;
1 Pull each arm till at least one user feedback is
obtained

2 while ¢t < 7T do

3 L= List arms in ascending order of L;(t)
4 Observe user feedback: I
5
6

S]t(t) = S]t(t -1H+1
pr(t) = pr,(t— 1) + 5 (L= Y5, () —pr,(t = 1))

2logt
Si(t) ’

7 Li(t) = pi(t) —
8 end

for all i € [K]

Theorem 6. The regret obtained by Algorithm 3| is
RECB(T) = O(1).

The proof of Theorem [f]is provided in the Appendix [15].

Theorem [6] shows that the regret of the LCB algorithm is
O(1), which is significantly stronger than the (logT") lower
bounds established for EC (Theorem [3) and AE (Theorem [3)).
It is worth noting that, in the standard stochastic bandit setting,
both Explore-then-Commit and Action Elimination are known
to achieve order-optimal regret guarantees. However, this is
no longer the case in our problem, where the commitment
inherent in these algorithms leads to Q(log7’) regret. In
contrast, the LCB algorithm avoids committing to a single
arm, instead adapting continuously through confidence-bound
updates, which allows it to achieve significantly lower regret
in our setting.

E. Thompson Sampling

In this subsection, we analysed the Thompson Sampling
(TS) algorithm, formally defined in Algorithm [ TS is a
Bayesian approach that maintains a posterior distribution over

the error probability of each arm, modelled using Beta priors.
At each round ¢, a sample 6;(¢) is drawn from the Beta
distribution Beta(w;(t), 8;(t)) for each arm ¢ € [K]. The
arms are then ordered in ascending order of these sam-
pled values, thereby balancing exploration and exploitation
through randomisation. After observing the user feedback
Y7, (t) for the triggered arm Iy, the corresponding posterior
parameters are updated: oy, is incremented when the feedback
indicates success, and [j, is incremented otherwise. This
sampling-based update mechanism ensures that arms with
higher uncertainty are explored more frequently, while arms
with consistently low error probabilities are more likely to
appear earlier in the cascade, leading to convergence toward
the optimal ordering.

Algorithm 4: Thompson sampling
Output: Ordered list £;

1 Initialize: a; = 1, B; = 1 for all ¢ € [K]

2 while ¢t < T do

3 Generate Thompson sample
0;(t) ~ Beta(a;(t), B;(t)) for all i € [K]

4 L= List arms in ascending order of 6;(t)

5 The cascade model shows the result of arm I; to
the user

Feedback of result Y7, (t) is observed
Oé]t(t + 1) = a[t(t) +1-— Y]t(t),
Br,(t+1) = B1,(t) + Y, (1).

s end

Theorem 7. The regret obtained by Algorithm | satisfies
RTS(T) = O(1).

Proof. Regret is incurred at time slot ¢ if I, = ¢ and there
exists k such that p; > p; while arm ¢ appears ahead of arm
k in the cascade, i.e., [, (i) < I, ' (k). Hence, we can upper
bound the cumulative regret as

R(T)
SAmaz N

T K
E ZZ LI, = 0,3k s.t p; > pe, 1 1(4) < 175 (k)}
t=1 i=2
Define the event A; ;. (t) as {I; =4, ;' (i) < I; *(k), p;i >
pr}. Let B}, (t) denote the event {p;(t) < p; — A, 1./4} and
E?,(t) denote {0;(t) < px + A r/4}, where A; i = p; — .
Therefore, the regret decomposition becomes

~ K K-1 T
R(T) < Amax Y > E| Y 1{Ai (), B? ()}
=2 k=1 t=1

+ L{ Ak (), EF (1), BY (1)}
+ L{Ai (1), BY (1), Eﬁk(t)}] : 2

Finally, by applying Lemmas [5 [6] and [7] which respectively
control the contributions of each of the three terms in (2)), we



conclude that the cumulative regret is bounded by a constant,
ie., RTS(T) =0(1). O

Lemma 5. The regret of the first term in (2) is bounded as
follows

E

> H{Ai,k(t),Eﬁk(t)}] <1+ 16

t=1

Lemma 6. The regret of the second term in @) is bounded
as follows

B [ 1. 27,0, )] < 2 b 24 T
i,k\U), L » L kg S5 - T 5 T -
=1 o Aikﬂi M% 6

Lemma 7. The regret of the third term in (2)) is bounded as
follows

E

T
t=1

24 2c¢q 61662/2 1 1
—1{16 1 -
T L10e <1} + 2

2 2 €2
8c1  4cplog(e® —1)
L)
€ €2

where cq is a constant.

The proof of Lemma [3] [6] [7] are provided in the Appendix
[15]].

From Theorem [7] we observe that Thompson Sampling also
outperforms EC and AE in terms of regret minimization.
Similar to LCB, Thompson Sampling avoids committing to
a fixed arm after an exploration phase. Instead, it maintains
a posterior distribution over arm parameters and samples
from it at each round, thereby naturally balancing exploration
and exploitation throughout the horizon. This probabilistic
updating enables Thompson Sampling to achieve constant
regret, whereas EC and AE incur Q(log T") regret due to their
one-time commitment strategy.

IV. SIMULATIONS

In this section, we validate our theoretical findings through
simulations. We consider the case of K = 5 arms
with parameters ¢ = [0.85,0.9,0.95,0.92,0.87] and p =
[0.1,0.25,0.4,0.55,0.7]. The results are averaged over 20
independent experiments. As shown in Fig. 2] we compare
the regret of the policies from Section [III] for varying horizon
T. The results indicate that the Thompson Sampling and
LCB algorithms achieve constant regret, whereas the Ac-
tion Elimination and Explore-and-Commit algorithms exhibit
logarithmic regret growth. These observations are consistent
with, and hence validate, the theoretical guarantees estab-
lished in Section The superior performance of Thompson
Sampling and LCB arises from their ability to continuously
balance exploration and exploitation, thereby adapting to
uncertainty throughout the horizon, while Action Elimination
and Explore-and-Commit commit after the exploration period,
which inherently leads to 2(logT') regret. To ensure fair ini-
tialisation, we assign a large value to the LCB at the beginning

and break ties randomly, thereby avoiding additional delays
for initial sampling.

—— Explore and commit
1 —— Action Elimination
J— LCB

Thompson Sampling

Regret

5000 A * S —
2500 A /
ot o 1y 7y {y 7y
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150 i/}/}\}_/i
100 — LcB

Thompson Sampling

T T T
30000 40000 50000

T

T T
10000 20000

Fig. 2: Comparison of regret for different policies

To analyze how regret evolves over time and how frequently
each policy selects a suboptimal ordering, we plot the cu-
mulative regret up to 7 = 5 x 10% rounds for the case of
K =5 arms with parameters p = [0.85,0.9,0.95,0.92,0.87]
and p = [0.1,0.25,0.4,0.55,0.7]. The results are presented
in Fig. 3] We observe that the Explore-and-Commit and
Action Elimination algorithms incur constant regret once they
enter the commit phase. In contrast, the LCB and Thompson
Sampling algorithms continue to accumulate regret, but at
a much slower rate. While they initially incur small regret
due to exploration, their regret growth eventually saturates
and becomes sublinear, highlighting their superior ability to
balance exploration and exploitation over time.

E 10000 4 — Explore and commit
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< 75001 —— LCB
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Fig. 3: Comparison of cumulative regret of different polices
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V. APPENDIX

Proof of Theorem[I| We prove this result by contradiction.
Assume that the optimal arm ordering, denoted by L£*, is not
sorted by increasing p; values. This implies there exists an
adjacent pair of arms, I5 and I3, ;, such thaF pir > bz, -
The expected reward of the assumed optimal ordering L£*

is given by

K 1—1
= Z(l — puz )z H(1 — iz )
i—1 j=1

Now, let’s consider a new ordering, £, obtained by swapping
arms [; and [} ;. The difference in expected reward between
the two orderings is

1—1

== TTO = ) | [0 = piy + (0= puz, iz, 1

=1

AT tools are used throughout the paper for grammar and editing.

- ((1 —piz, oz, + (1= pi ) (1= uz;“))}

i—1
= | TI0=m) | [0 =pedms (1= (1= me,,))
j=1
—-(1 7pl§‘+1)'ulf+1 (1 B (1 - ,Ul;))}
i—1
= [T = gz iz gz, {(1 —piz)—(1- Pl;;l)]
j=1
i—1
= H(1 — sz, | (P, — piz)-
j=1
Sinc probabilities  are  non-negative, the term
Hi.fl (1 — page ) page g is non-negative. From our
j=1 Hor )y He, g :

assumption, p;x > D, which implies e, — Pi; < 0.
Therefore, r* — ¥ < 0, which means 7 > r*. Thus
7 > r*, contradicting the optimality of L£*. Therefore no
such index ¢ can exist, which proves the claimed ordering
pir <puy < <pr-

O

Proof of Lemma [4] We analyse the asymptotic behaviour of

a1 f(t) + ase 3 F D (t — f(1))
log(t)

under different growth rates of f(¢).
f(@)

Case 1: If liminf,_, Toa(f) = OO then
—asf(t) (¢ —
liming @f () Fa2e” T OE = f(1) L anf()
t—o00 log(t) t—300 10g(t)
= 0.

Case 2: If liminf;_, % = { < oo, then
arf(t) + age= 2Dt — f(t))
log(t)
_ BN —aszf(t)/log(t) t_
foleJrozghtrgggft 3 s (log(t) 5).

lim inf
t—o0

Since liminf;_, oo 1;(;2) =/, we obtain
1itlgio£1f ar f(t) + aQIGOgOEX(t) (t—f@)
ar/, azl > 1,
= al+az, asgl=1,
0, aszl < 1.

Combining both cases, the quantity is always bounded below
by a positive constant multiple of log(t). Hence,

ar f(t) + age” IO (t — f(t)) = Q(log(t))-
O

— )

Proof of Theorem 3] Let N;(t) denote the number of times
arm ¢ is placed first in the cascade up to time ¢. Let
§(TEC) represent the probability that Algorithm |I| chooses a


https://tinyurl.com/ynjwpcf8/

suboptimal ordering in the commit phase after the exploration
horizon TF¢.

Exploration phase: Since the algorithm rotates arms uni-
formly, each arm appears first approximately 7F¢ /K times.
The regret incurred during this phase comes from pulling
suboptimal arms in the first position, and can be written as

ZE

Commit phase: If a suboptimal ordering is chosen after
exploration, then the regret in the commit phase is at least

NTONT ~ T ~

K

REC TEC TEC — 1TSECAmin~

mm =

DA pin.

During exploration, the algorithm collects at most T.F¢

effective samples of arms in the first position. Thus, the
problem of finding the optimal cascade ordering contains,
as a subproblem, best-arm identification with a fixed budget
of TSEC samples. Therefore, any lower bound on the error
probability of fixed-budget best-arm identification directly
applies to our setting. By the result of [11f], there exists a
constant 5 > 0 such that

J(TEC) > e P17

This inequality means that the probability of choosing a
suboptimal ordering in the commit phase cannot be made
arbitrarily small. Even after exploring each arm for TF¢
rounds, there is still a nonzero chance that the algorithm
misidentifies the best arm for the first position. Therefore,
the total regret satisfies

RPC(T) = RPC(TFC) + 6(TPC)(T —

K—-1 ~ EC
> ———TECOA iy + e PT
<K s +e

TEC — 1A

Finally, by Lemma [4] this simplifies to
REC(T) = Qlog T).
O

Proof of Lemma [I] The arms’ ordering is not optimal if the
LCBs are not ordered correctly. Which means 3¢ such that
Li(t) > Li11(t), t = TFC.

K-1
P(Ly # L7) < Y P(Li(t) > Lita(t)).
1=1

2log T

Let & be the event that [p;(t) — pi| < /575 for all 4.
P(L: # L)
K—1
<D P(Li(t) > Lisa(t), &) + P(EF)
i=1
(a) =
<

1
/210 T
]P( g p1+1
1=1

T4

210gT
7,+1 a t

+

(T — TFC —1)Anin.

K—1
< P 7 (3 -2
- ; (p T p Siya(t) ) T*
K—1
8logT K
= P <Si+1(t) ) —
i=1 A%—‘rl T4
K
8logT K
EC
ZP(&(T@ ) < A2 ) T
=2 ?

K
T4

Where (a) is obtained using Hoeffding’s inequality, (b) is
obtained by using the fact that if X ~ Ber(n,p) and E[X] =
p, then for 0 < e < 1, P(X < (1 — e)pu) < e™ < H/2, O

Lemma 8. If & holds then in commit phase for Algorithm
Ly =L"

Proof. Let us assume &; holds and £; # L£* that is Ji in the
ordering £; such that p;x < p;: . Algorithm [2}is in commit

phase.
= pie(t) — e (t) >pre (1) + e (£)
= Dt >pie_,»
which is a contradiction. O
Proof of Lemma
P(Ly # L7) =P(Ly # L7, &) + P(Ly # L7, &)
(é IP)( 7& £* gc)
<P(&F)
K
Sﬁa
where (a) is obtained by using Lemma O
Lemma 9. For Algorithm if & holds and S;(t) > H’XET

for all i where, A, = min{p; — pi—1,Di+1 — Di} then
algorithm is not in the active phase.

Proof. Let us assume &; holds and algorithm is in active phase
then 3, j, k such that

pi(t) + €i(t) > p;(t) — €;(t) or



Pi(t) —€i(t) < pr(t) + ex(t)
= pi+ 26i(t) >pj— 2€j(t) or p; —
P+ Di D+ Di
or
2 2

i — 26,(1) < Pi;pk or pH2-pk

— 2(t) 2B or 96 (t) >

2¢;(t) < pr + 2€x(t)

Z b; — 2€j(t) or

— p; + 2€i(t) >

< pr + 26 (1)
DPj — Pi or

[\)

bi ;pk or 2¢x(t) >

16logT
7(% — )2 or S;(t)

16logT

Pi — Pk

2

16logT
(pj — pi)?

16logT

(pi —pr)*

Therefore if S;(¢) > % for all ¢ where, A} = min{p; —
Pi—1,Pi+1 — Pi}. then #7, k such that p;(¢) + €;(t) > p;(t) —
€;(t) or p;(t) —€;(t) < pr(t) + e (t) for all ¢. This means no
active arms exist, and Algorithm [2is in the commit phase. [J

26i(t) Z

IN
IN

or Si(t) < 3

Proof of Lemma 3] Let us consider an algorithm A, where
samples are updated only when it is the head of the cascade
and everything is the same as Algorithm [2} Let TA¥ and TA
be the time after which Algorithm [2| and A enter commit
phase. Since samples are updated less often, A takes more
time to enter the commit phase; therefore, TAF < T;“

Note that both algorithms modify the ordering similarly
(round robin). Therefore, at any given time, N;(t),¢ < TSAE
is the same for both algorithms. Since N;(¢) is a monotone
function N;(TAF) < N;(TH).

If & holds V¢, then Lemma [9 also holds and arm 1
is removed from active set if S;(t) > 16&# Then N;
represents the upper bound on the number of times arm 4 is
head of the cascade in active phase for A. Thus N;(TAF) <
Ni(T#) < N; when & occurs V.

TAE TAE

Z E[R] =Y E[R|EIP(E;) + E[R|EFIP(EY)
t=1
TAE

< E[RiE] + ApaaP(EF)

t=1
K TAE

<Y EINJ(TE)A 4 PE) Apan
i=1 t=1

(a) KAmaac

E[N;]A; +

[

Il
—

T )

K2

where (a) is obtained by using Lemma

Proof of Theorem[6] Let & be the event that |p;(t) — p;| <
Q;ic’(%)t for all ¢. By Hoeffding’s inequality we have P(Ef) <

- Let G, be the event that all arms are ordered correctly in
time slot ¢. Thus G represents the event that there 3i € [K]
such that L;(¢) > L;1(t). Therefore,
K-1
gt ) gt S ]P)

i=1

) > Lita(t), &)

Let us define a new random variable

1 if X;(¢t) =1 and X;(t) =0,Vj # 4,
Zi(t) = ;
0 otherwise.

Note that arrivals are independent therefore {Z;(t)}i>1
are also independent across time. Note that Z;(t) ~
Ber(pi[1;,,(1 — p;)) and let us define zi; = E[Z;(t)] =
#i [1;4:(1 — ;). The number of user feedback samples is
lower bounded as follows Z:L=1

Z;(t) < Si(t). Therefore

K
logt
< P<Zi<t><8§§>.
Jj=2 J

The regret is obtained only when the ordering is incorrect.
Let E[R;] be the regret incurred in time slot t.

E[R:] =E[R:|G:|P(G;) + E[R:|G;P(GF)
=E[R:|G{]P(G;)
=E[R:|&, GiIP(Gy, &) + E[R4|Ef, G P(G, EF)
K
<A MZP<Zz<t) 81°gt> + BraaP(EY).

=2

P(gtca 8t)

J

The overall regret is bounded as follows

RLCB (T)

I
[M]=

B[R]

~
Il
-

Amas

B

8logt ~
P (zxt) < ) + B s P(ED)

~
I

1

K
max E

MQEMN

T
A 8logt ~ K
=2 P( <Az>+ZAmamt2.
j=2t=1 7 =1
Note that for t > T", where T" = A?%. we have 31081 < it
therefore : g

d 8logt i
;]P’(Zi(t)<A§> S +Z]P’< g)

t=T"'
— 2
—A2 - Z et
t=T"
16 2

<——5— + —5.
Alpy i



Now, we bound the regret as follows

~ K ~ 2
RLCB(T) SAmaz ( 10 + 2) + Amam-Kvi7r

2. =2
=2 Aj.u] M

=0(1).

Proof of Lemma 5] Let 79 = 0 and 7y,72,--- be the time
slots in which sample for p; is obtained i.e. [; = 1.

T
E Z]l{Ai,k(t),Eﬁk(t)}] <E

t=1

T
Zﬂ{Eﬁk(t),It = i}]

t=1

T
> ll{Ef,k(m)}]

k=0

(a) )
Sl + Z e—QkEZ

k=1

1

<1+ —

s+ 2¢2

8

:1 =+ —,
ATy

<E

where (a) is obtained by using Hoeffdings’ inequality. O

Lemma 10. If S;(t) represents the number of samples ob-
served by arm 1 till time t then we have,

T
161 2
t=1

2
Afk
Proof. Let us define a new random variable

L2
A g

1 if X;(t) =1 and X,(t) =0,Vj # i,
Zi(t) = :
0 otherwise.

Note that arrivals are independent therefore {Z;(t)}i>1
are also independent across time. Note that Z;(t) ~
Ber(pi[];4,(1 — p7)) and let us define fi; = E[Z;(t)]
wi Il ; 7&1‘(1 — ;). The number of user feedback samples is
lower bounded as follows 22:1 Z;(n) < S;(t). Therefore,

T T t
Z 16logt Z Z 161logt
t=1 i,k t=1 n=1 ik
Note that for ¢ > 17, where 77 = 22— we have 18198t
Ai,k”l Ai,k

it
B2, therefore

T T
161ogt 32 tit;
Pl Z(t) < < Pl Z(t —_—
> ( = Ah)‘ﬁ? aWICURS )

Proof of Lemma [B] Let L;(t) = % then,

T
D L{Auk(®), BP,(6), B (D)
T
= L{Aiu(t), EL,(2), B (1), Silt) < Li(D)}

T
) I{Ai(t), EL (1), BLL (1), Silt) > Li(t)}.
t=1
Consider,

E

D U Auk(t), B (1), B4 (1), Silt) < Lz‘(t)}]

t=1

< zT: P(S;(t) < Li(t))

) 32 2
<o+ =5 “)
A?’kﬂi 1%2

where (b) is obtained from Lemma [0} Now consider,

E

T
> L{Au(t), B (1), E (1), Sit) > Lz'(t)}]

t=1

T
< ZE [1{pi(t) = pi — €,0;(t) < pr +€,5:(t) > Li(t)}]

U
<D (5)

where (c) is obtained by using Lemma 4 of [[12]. By using
(@) and (B), we get the result stated. O

Proof of Lemma([7] Let F; represents the history till time ¢
that is, 7y = (I1,Yr,, I, Y5, - - It, Y7,) and define Fop = {}.
Note that p;(t), distribution of 6;(t), and either E¥(¢) is true
or not is determined by F;_;. Let F;_; be the instantiation
of Fi_1 where E? is true. We define g, = P(0r(t) <
pr + €|Fi—1 = Fi_q1) and @_(t) represents the vector
0(t) without 0 (). Let O, 1 (t) represents the collection of
all possible values of #(t) for which A;j(¢) and Eﬁ w (1)
holds. Let ©; _x(t) = {0_x(t) : 0(t) € ©;x(t)}. Let
M; = {j : 1;'(4) > I;'(i)} represents the arms after arm
¢ in cascade. Then,

E[1{Ai(6), B, (0), B (1)}
—E [1{Aix(6), B, (0), ELu (O} Fia = Fioa
<P(0;(t) > pr +€Vj €M, Iy =i



0_k(t) G 61;,—k(t)|ft_1 - Ft—l)
=P(0x(t) > pr + €| Fo1 = Fi_1).

Bl I a-x,0)6

Lemma (Implied by Lemma 2.9 [13])). If 71, s denote the time
step at which s-th sample of arm k is observed then we have

E |:]- - qk,‘rk)si|
qk’,‘l’k,s

<1, (0) _ % for s < %
P(6;(t) > pr + e¥j € M,/ {k}, Mo (e_€2s/2 ket P 1) else,
0_1(t) € O;—k(t)|Fi-1 = Fi—1)
where Dy, = K L(pg, px + €).
=1 = qre)- — Xy, —k ow, we follow a similar analysis from Lemma 3.3 o
(1 ).E (1= X, (£))0_(t) N foll imilar analysis from L 3.3 of [[14]
G<i;7 (1) and improve the bound stated in [14].
IP’(HJ(t) > pr+ GVj S MZ/{]C}7
0_4(t) € ©;_4(t)|Fi1 = Fr 1), © & {1—%7}
Consider the instance where 64 (¢) is modified such that qk’Tkg 1
. . 7623/2 —sDy
Or(t) < 6;(t) and @_k(t) is not modified, then < Z -+ . Z e + PRIk
1 1 0 0<s<8/¢ 8/e<s<T-1 (S+ )6
E[]l{[t:k,lt (k) < I;1(3), BY 4 (8), .
€2s5/4 __
0_k(t) € Oik(t)|Fir = Fi1}] ot /-1 iy
- 2 —€e2s/2 —2€2s
>P(9k(t)<pk+€§9J(t),Vj EMZ/{k},It:k, S?"’Cl.g:le / +01.A/6 m@ ds

G_k(t) € ®i,—k(t)|ft—1 = Ft—l)-
=P(0k(t) < pr + €| F—1 = F1_1).

El JI @-x)6-x)

ASO)
P(0;(t) > pr +€,Vj € M;/{k},
0_i(t) € ©; k()| Fio1 = Fr1)
>kt E II a-x,)6-x@
J<iy M (t)—1
P(0;(t) > pr. + €,V € M;/{k},
G_k(t) S ei,—k(tﬂft—l = Ft—1)~
From (6), (7) we get
T
EP:MmA) <>W<»]
t=1
T [ ¢
— k.t _ 1.
< gE e, W=kl k) <171,
Eﬁk(t),e,k(t) S Gi,fkr(t)u:tfl = thl} .

Let 7 s be the time slot in which arm & is chosen for s-th

time, then we have

ZIE

%wurwl%m<w%x

B2 (t),0_k(t) € O _1(t)|Fie1 = Fy1}

T-1 1
+c ————ds
1 /8/5 e€?s/4 _ 1

(b) 24 201 61662/2 1 1
— — 1416 1 -
16¢ {16e <1} + e

< —
- 2 62

€2 €

T-1 1
s,
T /s/e S

where ¢; is a constant. (a) follows from the fact K L(p, q) >
@. (b) is obtained using the result from [|14] and fact that
Yoo et < %, a > 0. Consider

T-1
I,

Therefore,

E [Z H{Au(8), BY,(8), EZk(t)}]

t—

1 e 1
eyl S/S/E =yl
_8 4log(e? — 1)

- 2

(M

€ €

24 201 61662/2 1 1
— — 1416 1 -
a2t + €2 16¢ {16e <1} + e
8c 4c¢; log(e? — 1
L8a 4o g(2 )
€ €
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