
Cascading Bandits With Feedback
R Sri Prakash

IIITDM Kancheepuram
sriprakash@iiitdm.ac.in

Nikhil Karamchandani
IIT Bombay

nikhilk@ee.iitb.ac.in

Sharayu Moharir
IIT Bombay

sharayum@ee.iitb.ac.in

Abstract—Motivated by the challenges of edge inference, we
study a variant of the cascade bandit model in which each
arm corresponds to an inference model with an associated
accuracy and error probability. We analyse four decision-making
policies—Explore-then-Commit, Action Elimination, Lower Con-
fidence Bound (LCB), and Thompson Sampling—and provide
sharp theoretical regret guarantees for each. Unlike in classical
bandit settings, Explore-then-Commit and Action Elimination
incur suboptimal regret because they commit to a fixed ordering
after the exploration phase, limiting their ability to adapt. In
contrast, LCB and Thompson Sampling continuously update
their decisions based on observed feedback, achieving constant
O(1) regret. Simulations corroborate these theoretical findings,
highlighting the crucial role of adaptivity for efficient edge
inference under uncertainty.

Index Terms—cascade bandits

I. INTRODUCTION

The increasing penetration of Artificial Intelligence (AI)
and the Internet of Things (IoT) across diverse application
domains has led to a growing demand for Mobile Edge
Computing (MEC). To achieve faster inference from models
trained for specific tasks, it is essential to host them at the
edge, thereby reducing latency and improving responsiveness.
In this work, we adopt the approach of using a collection
of simpler, task-specific models organized in a cascade to
perform inference at the edge. A user submits an inference
request to the edge, thereby alleviating the computational
burden on the User Equipment (UE).

Our system consists of multiple cascaded machine learning
(ML) models, each paired with a dedicated scoring module, as
shown in Fig. 1, following a design similar to [1]. For a given
query, each ML model generates an output, which is then
evaluated by its corresponding scoring module. The scoring
module maps the model’s output to a binary decision: a value
of one indicates that the response is capable of satisfying the
user’s query, while a value of zero indicates otherwise. If the
scoring module outputs one, the response from that ML model
is forwarded to the user, who subsequently provides binary
feedback indicating whether the response is satisfactory (one)
or unsatisfactory (zero). Conversely, if the scoring module
outputs zero, the query is passed to the next ML model in
the cascade. This process continues until a scoring module
outputs one or until all scoring modules return zero. In the
latter case, the cascade model is unable to satisfy the user’s
query.

A critical consideration in our model is that a scoring
module’s output of 1 does not guarantee a satisfactory user
experience, as the user may still provide feedback of 0. We

Nikhil Karamchandani’s work was supported by a SERB MATRICS grant.

ML Model
User

Feedback

Text/data

Text/data

1/0
/

ML Model

Text/data

Scroing
Module

1/0

ML Model

Text/data

Scroing
Module

1/0

...
Scroing
Module

1/0

Text/data

1 1 1

0 0

Fig. 1: Cascade ML models with scoring modules

account for this by modeling a stochastic error probability
for each scoring module. This error is only detectable when a
scoring module returns a 1, but the user’s subsequent feedback
is 0. The reward obtained in this setting is defined as 1 if
the user feedback is satisfactory, and 0 if the feedback is
unsatisfactory or if the system fails to serve the request. The
central objective of this work is to determine the optimal
ordering of the ML models within the cascade so as to
maximize the total reward or, equivalently, to minimize the
regret, defined as the difference between the reward of the
policy under consideration and that of the static optimal
policy.

We model our edge inference setup as a cascade of ML
models, each paired with a scoring module as a cascade bandit
problem with feedback. Each model–scorer pair is treated as
a bandit arm, and the system output corresponds to the first
model in the cascade whose scorer outputs one. This setting is
closely related to the cascade bandit framework [2], [3], where
a list of items is presented to a user and a reward is obtained if
an item is clicked. In our case, the agent selects the first model
with a positive score, presents its response, and receives binary
user feedback: one if satisfactory, zero otherwise. If all scorers
output zero, the request is unserved, analogous to the “no-
click” outcome in cascade bandits. Unlike [4], which studies
best-arm identification, we focus on regret minimisation; and
unlike [5], our feedback is immediate rather than randomly
delayed.

Our model differs from the conventional cascade bandit
setting in that the reward depends directly on the order of
models in the cascade, unlike the standard setup, where order
does not affect slot reward. It is also related to cost-aware
cascading bandits [6]–[9], where ordering impacts the total
reward due to examination costs. The closest prior work is
[10], where an agent presents a list of items and optimises the
order to maximise reward. While our LCB algorithm differs
from their UCB variant, we adapt their theoretical techniques
and further leverage results from [11]–[14] to establish sharp
regret guarantees.

The key contributions of this work are as follows. We show
that any policy which becomes static after a certain number

of time slots—such as explore-and-commit algorithms—will
incur a regret of order Ω(log T). We then analyze the per-
formance of the Lower Confidence Bound (LCB) algorithm
and the Thompson Sampling algorithm in our cascade ban-
dit setting, and demonstrate that both achieve O(1) regret.
Furthermore, we validate these theoretical results through
extensive simulations, showing strong consistency between
the theoretical guarantees and empirical performance.

II. PROBLEM SETUP

We consider a K-arm cascade bandit problem, where the
set of arms is denoted by [K] = {1, 2, . . . ,K}. Each arm
produces a binary output independently of the others. Let
Xi(t) denote the output of arm i at time slot t (representing
the scoring module’s decision), where {Xi(t)}t≥1 are i.i.d.
Bernoulli random variables with mean µi = E[Xi(t)].

At each time slot t, the learner selects an ordering of the
arms, denoted by Lt = (l

(t)
1 , l

(t)
2 , . . . , l

(t)
K), where l

(t)
j denotes

the arm placed in position j of the cascade. The cascade is
traversed sequentially in this order until the first arm that
outputs one is encountered. Formally, the selected arm index
at time t is It = min{j ∈ [K] : X

l
(t)
j
(t) = 1}, with the

convention that It = ∞ if all arms output zero.
The response of the selected arm l

(t)
It

is shown to the user,
who provides feedback Y

l
(t)
It

(t) ∈ {0, 1} indicating whether
the displayed result was relevant. The user feedback is treated
as the reward in slot t. If It = ∞, no arm is displayed and the
reward is zero. An arm i is thus observed only if Xi(t) = 1
and all arms preceding it in the ordering Lt output zero.

An error is said to occur if Xi(t) = 1 and Yi(t) = 0.
These errors are stochastic, with error probability defined as
pi = P(Yi(t) = 0 | Xi(t) = 1), ∀i ∈ [K]. Without loss of
generality, we assume the arms are indexed such that p1 <
p2 < · · · < pK . For notational convenience, we also define
the gaps ∆i = pi − pi−1 for 2 ≤ i ≤ K.

The goal is to maximize the cumulative reward, or equiva-
lently, minimize the cumulative regret, by dynamically adapt-
ing the ordering of the arms in the cascade. Let L∗ =
(l∗1, l

∗
2, . . . , l

∗
K) denote the optimal ordering of the arms, which

sorts arms in increasing order of their error probabilities.
Furthermore, let l−1

t (i) denote the position of arm i in the
ordering Lt. The regret of a policy then quantifies the expected
reward loss incurred relative to always playing L∗.

We define the expected reward of a cascade model when
the arms are ordered according to the ordering L =
(l1, l2, . . . , lK) as

rL =

K∑
i=1

(1− pli)µli

i−1∏
j=1

(1− µlj).

This expression reflects that the i-th arm in the ordering
contributes to the reward only if all preceding arms 1, . . . , i−1
fail to produce an output 1, which occurs with probability∏i−1

j=1(1 − µlj). Given that arm i is shown, it produces a
satisfactory feedback with probability (1−pli), and the event
of the arm being triggered occurs with probability µli . Hence,

the summation accounts for the expected contribution of each
arm to the overall reward under ordering L.

We define the suboptimality gap of an ordering L as
∆̃L = rL∗ − rL, which quantifies the loss in expected reward
when using L instead of the optimal ordering L∗. For each
arm i, let Mi be the set of all orderings starting with i, and
define ∆̃i = maxL∈Mi

∆̃L as the maximum suboptimality
incurred by choosing i as the first arm. The largest such value
across arms, ∆̃max = maxi ∆̃i, represents the worst-case loss
from starting with a poor arm, while the smallest nonzero gap,
∆̃min = minL≠L∗ ∆̃L, captures how hard it is to distinguish
the optimal ordering from its closest suboptimal alternative.

Regret is defined as the difference in expected reward
between the optimal policy and the policy under consideration.
Let Rπ(T) represent the expected regret of policy π until time
T , and let Rπ

t denote the expected regret incurred in slot t:

Rπ
t =rL∗ − rLt

Rπ(T) =

T∑
t=1

Rπ
t

The objective is to select the order of arms Lt in each round
to minimize the cumulative regret. This essentially means we
want to find a policy that, over time, consistently chooses an
arm ordering that is as close as possible to the optimal one.

III. RESULTS

In this section, we will first define the optimal static policy
for our problem and then introduce several online algorithms
designed to minimise regret. These algorithms—Explore and
Commit (EC), Action Elimination (AE), Lower Confidence
Bound (LCB), and Thompson Sampling (TS) — each come
with specific performance guarantees.

A. Static Optimal Policy

Theorem 1. The optimal static policy will order the arms in
increasing order of their error probabilities (pi)

The proof of Theorem 1 is provided in the Appendix [15].

Remark 1. The optimal ordering of arms is independent of
their means (µi), which are used for sampling. Instead, the
ordering relies exclusively on the probability of error (pi),
meaning arms with a lower error rate are given priority and
positioned first

B. Explore and Commit

The Explore and Commit (EC) algorithm, formally de-
scribed in Algorithm 1, is a two-phase strategy designed to
balance exploration with exploitation in the cascade bandit
setting. It begins with an exploration phase, where each arm
is pulled an equal number of times in order to estimate its
probability of error. The number of pulls per arm is defined as
N = maxi ni, where ni = ⌈ 16 log T

∆2
iµi

⌉, and the total exploration
period lasts for TEC

s = NK slots. During this phase, the
algorithm cycles through the arms in a rotating order, ensuring
that each arm appears in every position of the cascade. At

each time slot, the cascade presents the output of the first
triggered arm to the user, whose feedback is then used to
update the empirical error probability of the selected arm and
to compute lower confidence bounds on these estimates. Once
the exploration phase is complete, the algorithm enters the
commit phase, where the arms are permanently ordered in
ascending order of their estimated error probabilities. This
committed ordering is then used for the remainder of the
horizon.

Algorithm 1: Explore and Commit
Input: ∆i, T , µi

Output: Ordered list Lt

1 Initialize: L1 = random order of arms, t = 1

2 N = maxi⌈ 16 log T
∆2

iµi
⌉

3 Explore:
4 for t ≤ NK do
5 Order arms according to Lt

6 The cascade model shows the result of arm It to
the user

7 Feedback YIt(t) is observed
8 for i ∈ [K] do
9 Si(t) = Si(t− 1) + 1{i=It}

10 p̂i(t) =
{∑t

n=1 1{i=In}(1− Yi(t))
}
/Si(t)

11 Li(t) = p̂i(t)−
√

2 log T
Si(t)

12 end
13 Lt+1 = (l

(t)
2 , l

(t)
3 , · · · , l(t)K , l

(t)
1)

14 t++
15 end
16 Commit:
17 L′= List arms in ascending order of Li(t− 1)
18 for t < T do
19 Lt = L′

20 t++
21 end

Lemma 1. The probability that Algorithm 1 selects a subop-
timal ordering in the commit phase is bounded by

P(Lt ̸= L∗) ≤ K

T 2
+

K2

T 4
.

The proof of Lemma 1 is provided in the Appendix [15].

Theorem 2. The regret obtained by Algorithm 1 satisfies

REC(T) = O(log T).

Proof. The total regret can be decomposed into contributions
from the exploration phase and the commit phase:

REC(T) =

TEC
s∑
t=1

E[Rt] +

T∑
t=TEC

s +1

P(Lt ̸= L∗) ∆̃Lt .

Using Lemma 1, we obtain

REC(T) ≤ NK ∆̃max + T ∆̃max

(
K

T 2
+

K2

T 4

)
.

Since N = O(log T), the first term scales as O(log T), and
the second term is asymptotically negligible. Hence,

REC(T) = O(log T).

Theorem 3. The regret of Algorithm 1 is lower bounded as

REC(T) = Ω(log T).

The proof of Theorem 3 is provided in Appendix [15].
However, a key limitation of EC is that the required number

of pulls N depends on the gap parameters ∆i, which are
generally unknown in practice, making the algorithm difficult
to implement in real-world settings. This naturally motivates
the use of adaptive strategies such as Action Elimination,
which overcome this drawback by eliminating suboptimal
arms based on observed feedback without requiring prior
knowledge of ∆i.

C. Action Elimination

In this subsection, we analyse the Action Elimination (AE)
algorithm, formally defined in Algorithm 2. The algorithm
maintains two disjoint sets of arms: an active set At, con-
taining arms that are not yet sufficiently explored, and an
inactive set Bt, with At ∩ Bt = ∅. Initially, At = [K] and
Bt = ∅. Let LAt and LBt denote the ordered lists of active
and inactive arms, respectively. If an arm is removed from
At, the size of LAt

decreases but the relative ordering among
the remaining active arms is preserved, while LBt

may be
reordered when new arms are added. The overall ortdering Lt

is formed by concatenating LAt and LBt . To ensure that every
active arm continues to receive exploration opportunities, LAt

is rotated in a round-robin manner across slots, whereas LBt

is maintained in ascending order of LCB values.
While |At| > 1 (active phase), the algorithm updates

empirical error probabilities and their confidence intervals
(LCB and UCB). Arms are eliminated from At and perma-
nently added to Bt whenever their confidence intervals no
longer overlap with others. Once only one arm remains active
(commit phase), all arms are ordered by LCB values, and
this final order is fixed for the rest of the horizon. Thus, AE
progressively eliminates suboptimal arms while refining the
cascade ordering.

Unlike the Explore and Commit (EC) algorithm, which
explores uniformly for a fixed budget before committing,
AE adaptively eliminates inferior arms as soon as enough
evidence is gathered. This reduces unnecessary exploration
and can yield tighter regret guarantees.

For the analysis, we introduce the following notations. Let
∆′

i = min{pi − pi−1, pi+1 − pi} denote the minimum gap in
error probability that distinguishes arm i from its immediate
neighbors. Define Ni as the number of pulls required for
arm i to collect 16 log T

∆′2
i

feedback samples when placed at
the head of the cascade, and let Ni(t) denote the number of
times arm i has occupied the first position up to time t. Since
Algorithm 2 rotates arms in a round-robin fashion, each active
arm is guaranteed opportunities to accumulate these samples.

Algorithm 2: Action elimination
Output: Ordered list Lt

1 Initialize A1 = {1, 2, · · · ,K}, B1 = {} L1 = random
order of arms, t = 1, LAt = L1, LBt = (),
Si(0) = 0, p̂i(0) = 0

2 for t ≤ T do
3 Order arms as in list Lt

4 The cascade model shows the result of arm It to
the user

5 Feedback of result YIt(t) is observed
6 for i ∈ [K] do
7 Si(t) = Si(t− 1) + 1{i=It}

8 p̂i(t) =
{∑t

n=1 1{i=In}(1− Yi(t))
}
/Si(t)

9 Li(t) = p̂i(t)−
√

2 log T
Si(t)

10 Ui(t) = p̂i(t) +
√

2 log T
Si(t)

11 end
12 if [Li(t), Ui(t)] ∩ [Lj(t), Uj(t)] = ϕ, ∀i ̸= j then
13 At+1 = At/{j}
14 L̃At+1 = LAt/{j}
15 Bt+1 = Bt ∪ {j}
16 end
17 if |At+1| > 1 then
18 LAt+1 = (l̃At

2 , l̃At
3 , · · · , l̃At

|At|, l̃
At
1)

19 LBt+1
= ascending order over Li(t), i ∈ Bt+1

20 Lt+1 = (LAt+1 ,LBt+1)
21 end
22 else
23 Lt+1 = ascending order over Li(t)
24 end
25 t++
26 end

Let TAE
s represent the time at which the active phase ends.

Finally, define the event Et as

Et =
{
|p̂i(t)− pi| < ϵi(t), ∀i

}
,

where ϵi(t) =
√

2 log T
Si(t)

and Si(t) is the number of times arm
i has been observed up to time t.

Theorem 4. The regret obtained by Algorithm 2 is

RAE(T) = O(log T).

Proof.

RAE(T) ≤
TAE
s∑
t=1

E[Rt] +

T∑
t=TAE

s +1

P(Lt ̸= L∗)∆̃max

(a)

≤
K∑
i=1

E[Ni]∆̃i +
K∆̃max

T
+

K∆̃max

T

≤
K∑
i=1

16 log T

∆′2
i µi

∆̃i +
2K∆̃max

T

=O(log T),

where (a) is obtained by using Lemma 2 and Lemma 3.

Lemma 2. The probability of Algorithm 2 choosing a sub-
optimal ordering in the commit phase is bounded as follows

P(Lt ̸= L∗) ≤ K

T 2
.

Lemma 3. For Algorithm 2, regret in active phase is bounded
as follows

TAE
s∑
t=1

E[Rt] ≤
K∑
i=1

E[Ni]∆̃i +
K∆̃max

T
.

Lemma 4. Let f(t) be a function of t such that 0 ≤ f(t) ≤ t.
Then, for constants α1, α2, α3 > 0, we have

α1f(t) + α2e
−α3f(t) (t− f(t)) = Ω(log t).

The proof of Lemma 2, 3, 4 is provided in the Appendix [15].

Theorem 5. The regret of Algorithm 2 is lower bounded as

RAE(T) = Ω(log(T)).

Proof. Let δ denote the probability that the algorithm commits
to a sub-optimal ordering, and let TAE

s represent the number
of rounds spent in the active phase before committing.

By results on best arm identification with fixed confidence
in the full-information setting [16], the expected length of the
active phase must satisfy

E[TAE
s] ≥ β′ log

(
1
δ

)
,

for some constant β′ > 0.
An important property of Algorithm 2 is that all arms in the

active set At are explored in a round-robin manner through
the orderings LAt

. The algorithm remains in the active phase
as long as at least two arms are active. Consequently, the
maximum number of times any single ordering can be selected
is TAE

s /2, which implies that a sub-optimal ordering is chosen
in at least half of the slots. This structural property of the
algorithm directly contributes to the regret incurred during
the active phase. Therefore,

R(TAE
s) ≥ E[TAE

s]

2
∆̃min ≥ 1

2
β′ log

(
1
δ

)
∆̃min.

After the active phase, if the commit phase chooses a sub-
optimal ordering (which happens with probability at least δ),
regret continues to accumulate linearly with rate ∆̃min. Thus,
the total regret satisfies

RAE(T) ≥ R(TAE
s) +

T∑
t=TAE

s +1

δ ∆̃min

≥ 1

2
β′ log

(
1
δ

)
∆̃min + (T − TAE

s − 1)δ∆̃min.

(1)

Finally, applying Lemma 4 to (1) yields the claimed lower
bound,

RAE(T) = Ω(log(T)).

Remark 2. From the lower bound analysis, we can conclude
that any policy that commits after a certain exploration period
will necessarily incur a regret of order Ω(log T).

D. LCB

In this subsection, we analysed the Lower Confidence
Bound (LCB) algorithm, formally described in Algorithm 3.
The key idea of LCB is to order the arms at each round
according to their estimated error probabilities, adjusted by a
confidence term that encourages exploration. Initially, each
arm is pulled until at least one user feedback is obtained
to ensure a valid estimate. At every round t, the arms are
ranked in ascending order of their lower confidence bounds
Li(t), defined as the empirical error estimate p̂i(t) reduced by
a confidence margin

√
2 log t
Si(t)

, where Si(t) is the number of
times feedback for arm i has been observed. This construction
balances exploration and exploitation by prioritising arms that
either appear to have lower error probability or are still under-
explored. Over time, the ordering of arms converges toward
the optimal cascade order as the confidence intervals shrink
with more observations.

Algorithm 3: LCB
Output: Ordered list Lt

1 Pull each arm till at least one user feedback is
obtained

2 while t ≤ T do
3 Lt= List arms in ascending order of Li(t)
4 Observe user feedback: It
5 SIt(t) = SIt(t− 1) + 1
6 p̂It(t) = p̂It(t− 1)+ 1

SIt (t)
(1−YIt(t)− p̂It(t− 1))

7 Li(t) = p̂i(t)−
√

2 log t
Si(t)

, for all i ∈ [K]

8 end

Theorem 6. The regret obtained by Algorithm 3 is

RLCB(T) = O(1).

The proof of Theorem 6 is provided in the Appendix [15].
Theorem 6 shows that the regret of the LCB algorithm is

O(1), which is significantly stronger than the Ω(log T) lower
bounds established for EC (Theorem 3) and AE (Theorem 5).
It is worth noting that, in the standard stochastic bandit setting,
both Explore-then-Commit and Action Elimination are known
to achieve order-optimal regret guarantees. However, this is
no longer the case in our problem, where the commitment
inherent in these algorithms leads to Ω(log T) regret. In
contrast, the LCB algorithm avoids committing to a single
arm, instead adapting continuously through confidence-bound
updates, which allows it to achieve significantly lower regret
in our setting.

E. Thompson Sampling

In this subsection, we analysed the Thompson Sampling
(TS) algorithm, formally defined in Algorithm 4. TS is a
Bayesian approach that maintains a posterior distribution over

the error probability of each arm, modelled using Beta priors.
At each round t, a sample θi(t) is drawn from the Beta
distribution Beta(αi(t), βi(t)) for each arm i ∈ [K]. The
arms are then ordered in ascending order of these sam-
pled values, thereby balancing exploration and exploitation
through randomisation. After observing the user feedback
YIt(t) for the triggered arm It, the corresponding posterior
parameters are updated: αIt is incremented when the feedback
indicates success, and βIt is incremented otherwise. This
sampling-based update mechanism ensures that arms with
higher uncertainty are explored more frequently, while arms
with consistently low error probabilities are more likely to
appear earlier in the cascade, leading to convergence toward
the optimal ordering.

Algorithm 4: Thompson sampling
Output: Ordered list Lt

1 Initialize: αi = 1, βi = 1 for all i ∈ [K]
2 while t ≤ T do
3 Generate Thompson sample

θi(t) ∼ Beta(αi(t), βi(t)) for all i ∈ [K]
4 Lt= List arms in ascending order of θi(t)
5 The cascade model shows the result of arm It to

the user
6 Feedback of result YIt(t) is observed
7 αIt(t+ 1) = αIt(t) + 1− YIt(t),

βIt(t+ 1) = βIt(t) + YIt(t).
8 end

Theorem 7. The regret obtained by Algorithm 4 satisfies

RTS(T) = O(1).

Proof. Regret is incurred at time slot t if It = i and there
exists k such that pi > pk while arm i appears ahead of arm
k in the cascade, i.e., l−1

t (i) < l−1
t (k). Hence, we can upper

bound the cumulative regret as

R(T)

≤∆̃max.

E

[
T∑

t=1

K∑
i=2

1{It = i,∃k s.t pi > pk, l
−1
t (i) < l−1

t (k)}

]
.

Define the event Ai,k(t) as {It = i, l−1
t (i) < l−1

t (k), pi >
pk}. Let Ep

i,k(t) denote the event {p̂i(t) < pi −∆i,k/4} and
Eθ

i,k(t) denote {θi(t) < pk +∆i,k/4}, where ∆i,k = pi−pk.
Therefore, the regret decomposition becomes

R(T) ≤ ∆̃max

K∑
i=2

K−1∑
k=1

E

[
T∑

t=1

1{Ai,k(t), E
p
i,k(t)}

+ 1{Ai,k(t), Ē
p
i,k(t), E

θ
i,k(t)}

+ 1{Ai,k(t), Ē
p
i,k(t), Ē

θ
i,k(t)}

]
. (2)

Finally, by applying Lemmas 5, 6, and 7, which respectively
control the contributions of each of the three terms in (2), we

conclude that the cumulative regret is bounded by a constant,
i.e., RTS(T) = O(1).

Lemma 5. The regret of the first term in (2) is bounded as
follows

E

[
T∑

t=1

1{Ai,k(t), E
p
i,k(t)}

]
≤ 1 +

16

∆2
i,k

.

Lemma 6. The regret of the second term in (2) is bounded
as follows

E

[
T∑

t=1

1{Ai,k(t), Ē
p
i,k(t), E

θ
i,k(t)}

]
≤ 32

∆2
i,kµ̄i

+
2

µ̄2
i

+
π2

6
.

Lemma 7. The regret of the third term in (2) is bounded as
follows

E

[
T∑

t=1

1{Ai,k(t), Ē
p
i,k(t), Ē

θ
i,k(t)}

]

≤24

ϵ2
+

2c1
ϵ2

+
c1e

ϵ2/2

ϵ2

(
1

16ϵ
1{16ϵ < 1}+ 1

e

)
+

8c1
ϵ

− 4c1 log(e
2ϵ − 1)

ϵ2
,

where c1 is a constant.

The proof of Lemma 5, 6, 7 are provided in the Appendix
[15].

From Theorem 7 we observe that Thompson Sampling also
outperforms EC and AE in terms of regret minimization.
Similar to LCB, Thompson Sampling avoids committing to
a fixed arm after an exploration phase. Instead, it maintains
a posterior distribution over arm parameters and samples
from it at each round, thereby naturally balancing exploration
and exploitation throughout the horizon. This probabilistic
updating enables Thompson Sampling to achieve constant
regret, whereas EC and AE incur Ω(log T) regret due to their
one-time commitment strategy.

IV. SIMULATIONS

In this section, we validate our theoretical findings through
simulations. We consider the case of K = 5 arms
with parameters µ = [0.85, 0.9, 0.95, 0.92, 0.87] and p =
[0.1, 0.25, 0.4, 0.55, 0.7]. The results are averaged over 20
independent experiments. As shown in Fig. 2, we compare
the regret of the policies from Section III for varying horizon
T . The results indicate that the Thompson Sampling and
LCB algorithms achieve constant regret, whereas the Ac-
tion Elimination and Explore-and-Commit algorithms exhibit
logarithmic regret growth. These observations are consistent
with, and hence validate, the theoretical guarantees estab-
lished in Section III. The superior performance of Thompson
Sampling and LCB arises from their ability to continuously
balance exploration and exploitation, thereby adapting to
uncertainty throughout the horizon, while Action Elimination
and Explore-and-Commit commit after the exploration period,
which inherently leads to Ω(log T) regret. To ensure fair ini-
tialisation, we assign a large value to the LCB at the beginning

and break ties randomly, thereby avoiding additional delays
for initial sampling.

Fig. 2: Comparison of regret for different policies

To analyze how regret evolves over time and how frequently
each policy selects a suboptimal ordering, we plot the cu-
mulative regret up to T = 5 × 104 rounds for the case of
K = 5 arms with parameters µ = [0.85, 0.9, 0.95, 0.92, 0.87]
and p = [0.1, 0.25, 0.4, 0.55, 0.7]. The results are presented
in Fig. 3. We observe that the Explore-and-Commit and
Action Elimination algorithms incur constant regret once they
enter the commit phase. In contrast, the LCB and Thompson
Sampling algorithms continue to accumulate regret, but at
a much slower rate. While they initially incur small regret
due to exploration, their regret growth eventually saturates
and becomes sublinear, highlighting their superior ability to
balance exploration and exploitation over time.

Fig. 3: Comparison of cumulative regret of different polices

REFERENCES

[1] L. Chen, M. Zaharia, and J. Zou, “Frugalgpt: How to use large language
models while reducing cost and improving performance,” arXiv preprint
arXiv:2305.05176, 2023.

[2] B. Kveton, C. Szepesvari, Z. Wen, and A. Ashkan, “Cascading bandits:
Learning to rank in the cascade model,” in International conference on
machine learning. PMLR, 2015, pp. 767–776.

[3] S. Zong, H. Ni, K. Sung, N. R. Ke, Z. Wen, and B. Kveton, “Cascad-
ing bandits for large-scale recommendation problems,” arXiv preprint
arXiv:1603.05359, 2016.

[4] Z. Zhong, W. C. Cheung, and V. Tan, “Best arm identification for
cascading bandits in the fixed confidence setting,” in International
Conference on Machine Learning. PMLR, 2020, pp. 11 481–11 491.

[5] D. Wang, J. Cao, Y. Zhang, and W. Qi, “Cascading bandits: optimizing
recommendation frequency in delayed feedback environments,” Ad-
vances in Neural Information Processing Systems, vol. 36, pp. 78 894–
78 905, 2023.

[6] C. Gan, R. Zhou, J. Yang, and C. Shen, “Cost-aware cascading bandits,”
IEEE Transactions on Signal Processing, vol. 68, pp. 3692–3706, 2020.

[7] L. Tran-Thanh, A. Chapman, A. Rogers, and N. Jennings, “Knapsack
based optimal policies for budget–limited multi–armed bandits,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 26,
no. 1, 2012, pp. 1134–1140.

[8] A. Burnetas and O. Kanavetas, “Adaptive policies for sequential sam-
pling under incomplete information and a cost constraint,” in Applica-
tions of mathematics and informatics in military science. Springer,
2012, pp. 97–112.

[9] W. Ding, T. Qin, X.-D. Zhang, and T.-Y. Liu, “Multi-armed bandit
with budget constraint and variable costs,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 27, no. 1, 2013, pp. 232–238.

[10] D. Cheng, R. Huang, C. Shen, and J. Yang, “Cascading bandits
with two-level feedback,” in 2022 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2022, pp. 1892–1896.

[11] J.-Y. Audibert and S. Bubeck, “Best arm identification in multi-armed
bandits,” in COLT-23th Conference on learning theory-2010, 2010, pp.
13–p.

[12] S. Wang and W. Chen, “Thompson sampling for combinatorial semi-
bandits,” in International Conference on Machine Learning. PMLR,
2018, pp. 5114–5122.

[13] S. Agrawal and N. Goyal, “Near-optimal regret bounds for thompson
sampling,” Journal of the ACM (JACM), vol. 64, no. 5, pp. 1–24, 2017.

[14] Z. Zhong, W. C. Chueng, and V. Y. Tan, “Thompson sampling algo-
rithms for cascading bandits,” Journal of Machine Learning Research,
vol. 22, no. 218, pp. 1–66, 2021.

[15] https://tinyurl.com/ynjwpcf8/, 2025, [Online; accessed 30-Oct-2025].
[16] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge

University Press, 2020.
1

V. APPENDIX

Proof of Theorem 1. We prove this result by contradiction.
Assume that the optimal arm ordering, denoted by L∗, is not
sorted by increasing pi values. This implies there exists an
adjacent pair of arms, l∗i and l∗i+1, such that pl∗i > pl∗i+1

.
The expected reward of the assumed optimal ordering L∗

is given by

r∗ =

K∑
i=1

(1− pl∗i)µl∗i

i−1∏
j=1

(1− µl∗j
).

Now, let’s consider a new ordering, L̃, obtained by swapping
arms l∗i and l∗i+1. The difference in expected reward between
the two orderings is

r∗ − r̃ =

i−1∏
j=1

(1− µl∗j
)

[(1− pl∗i)µl∗i
+ (1− pl∗i+1

)µl∗i+1
(1− µl∗i

)

1AI tools are used throughout the paper for grammar and editing.

−
(
(1− pl∗i+1

)µl∗i+1
+ (1− pl∗i)µl∗i

(1− µl∗i+1
)
)]

=

i−1∏
j=1

(1− µl∗j
)

[(1− pl∗i)µl∗i

(
1−

(
1− µl∗i+1

))
−(1− pl∗i+1

)µl∗i+1

(
1−

(
1− µl∗i

))]
=

i−1∏
j=1

(1− µl∗j
)µl∗i

µl∗i+1

[(1− pl∗i)− (1− pl∗i+1
)
]

=

i−1∏
j=1

(1− µl∗j
)µl∗i

µl∗i+1

 (pl∗i+1
− pl∗i).

Since probabilities are non-negative, the term(∏i−1
j=1(1− µl∗j

)µl∗i
µl∗i+1

)
is non-negative. From our

assumption, pl∗i > pl∗i+1
, which implies pl∗i+1

− pl∗i < 0.
Therefore, r∗ − r̃ < 0, which means r̃ > r∗. Thus
r̃ > r∗, contradicting the optimality of L∗. Therefore no
such index i can exist, which proves the claimed ordering
pl∗1 < pl∗2 < · · · < pl∗K .

Proof of Lemma 4. We analyse the asymptotic behaviour of

α1f(t) + α2e
−α3f(t)(t− f(t))

log(t)

under different growth rates of f(t).
Case 1: If lim inft→∞

f(t)
log(t) = ∞, then

lim inf
t→∞

α1f(t) + α2e
−α3f(t)(t− f(t))

log(t)
≥ lim inf

t→∞

α1f(t)

log(t)

= ∞.

Case 2: If lim inft→∞
f(t)
log(t) = ℓ < ∞, then

lim inf
t→∞

α1f(t) + α2e
−α3f(t)(t− f(t))

log(t)

= α1ℓ+ α2 lim inf
t→∞

t−α3f(t)/ log(t)
(

t
log(t) − ℓ

)
.

Since lim inft→∞
f(t)
log(t) = ℓ, we obtain

lim inf
t→∞

α1f(t) + α2e
−α3f(t)(t− f(t))

log(t)

=


α1ℓ, α3ℓ > 1,

α1ℓ+ α2, α3ℓ = 1,

∞, α3ℓ < 1.

Combining both cases, the quantity is always bounded below
by a positive constant multiple of log(t). Hence,

α1f(t) + α2e
−α3f(t)(t− f(t)) = Ω(log(t)).

Proof of Theorem 3. Let Ni(t) denote the number of times
arm i is placed first in the cascade up to time t. Let
δ(TEC

s) represent the probability that Algorithm 1 chooses a

https://tinyurl.com/ynjwpcf8/

suboptimal ordering in the commit phase after the exploration
horizon TEC

s .
Exploration phase: Since the algorithm rotates arms uni-

formly, each arm appears first approximately TEC
s /K times.

The regret incurred during this phase comes from pulling
suboptimal arms in the first position, and can be written as

REC(TEC
s) ≥

K∑
i=2

E[Ni(T
EC
s)]∆̃min =

K − 1

K
TEC
s ∆̃min.

Commit phase: If a suboptimal ordering is chosen after
exploration, then the regret in the commit phase is at least

δ(TEC
s)(T − TEC

s − 1)∆̃min.

During exploration, the algorithm collects at most TEC
s

effective samples of arms in the first position. Thus, the
problem of finding the optimal cascade ordering contains,
as a subproblem, best-arm identification with a fixed budget
of TEC

s samples. Therefore, any lower bound on the error
probability of fixed-budget best-arm identification directly
applies to our setting. By the result of [11], there exists a
constant β > 0 such that

δ(TEC
s) ≥ e−βTEC

s .

This inequality means that the probability of choosing a
suboptimal ordering in the commit phase cannot be made
arbitrarily small. Even after exploring each arm for TEC

s

rounds, there is still a nonzero chance that the algorithm
misidentifies the best arm for the first position. Therefore,
the total regret satisfies

REC(T) ≥ REC(TEC
s) + δ(TEC

s)(T − TEC
s − 1)∆̃min

≥ K − 1

K
TEC
s ∆̃min + e−βTEC

s (T − TEC
s − 1)∆̃min.

Finally, by Lemma 4, this simplifies to

REC(T) = Ω(log T).

Proof of Lemma 1. The arms’ ordering is not optimal if the
LCBs are not ordered correctly. Which means ∃i such that
Li(t) > Li+1(t), t = TEC

s .

P(Lt ̸= L∗) ≤
K−1∑
i=1

P(Li(t) > Li+1(t)).

Let Et be the event that |p̂i(t)− pi| <
√

2 log T
Si(t)

for all i.

P(Lt ̸= L∗)

≤
K−1∑
i=1

P(Li(t) > Li+1(t), Et) + P(Ec
t)

(a)

≤
K−1∑
i=1

P

(
p̂i(t)−

√
2 log T

Si(t)
> p̂i+1(t)−

√
2 log T

Si+1(t)
, Et

)
+

K

T 4

≤
K−1∑
i=1

P

(
pi > pi+1 − 2

√
2 log T

Si+1(t)

)
+

K

T 4

=

K−1∑
i=1

P
(
Si+1(t) <

8 log T

∆2
i+1

)
+

K

T 4

=

K∑
i=2

P
(
Si(T

EC
s) <

8 log T

∆2
i

)
+

K

T 4

≤
K∑
i=2

P

TEC
s∑

τ=1

Xi(τ)1{l(τ)1 = i} <
8 log T

∆2
i

+
K

T 4

≤
K∑
i=2

P

TEC
s∑

τ=1

Xi(τ)1{l(τ)1 = i} < Nµi/2

+
K

T 4

(b)

≤
K∑
i=2

e−Nµi/8 +
K

T 4

≤
K∑
i=2

e−niµi/8 +
K

T 4

≤
K∑
i=2

1

T 2/∆2
i

+
K

T 4

≤K

T 2
+

K2

T 4
.

Where (a) is obtained using Hoeffding’s inequality, (b) is
obtained by using the fact that if X ∼ Ber(n, p) and E[X] =
µ, then for 0 < ϵ < 1, P(X < (1− ϵ)µ) ≤ e−ϵ2µ/2.

Lemma 8. If Et holds then in commit phase for Algorithm 2,
Lt = L∗.

Proof. Let us assume Et holds and Lt ̸= L∗ that is ∃i in the
ordering Lt such that plti < plti−1

. Algorithm 2 is in commit
phase.

=⇒ p̂lti (t)− ϵlti (t) >p̂lti−1
(t) + ϵlti−1

(t)

=⇒ plti >plti−1
,

which is a contradiction.

Proof of Lemma 2.

P(Lt ̸= L∗) =P(Lt ̸= L∗, Et) + P(Lt ̸= L∗, Ec
t)

(a)
=P(Lt ̸= L∗, Ec

t)

≤P(Ec
t)

≤K

T 2
,

where (a) is obtained by using Lemma 8.

Lemma 9. For Algorithm 2, if Et holds and Si(t) >
16 log T

∆′2
i

for all i where, ∆′
i = min{pi − pi−1, pi+1 − pi}, then

algorithm is not in the active phase.

Proof. Let us assume Et holds and algorithm is in active phase
then ∃i, j, k such that

p̂i(t) + ϵi(t) > p̂j(t)− ϵj(t) or

p̂i(t)− ϵi(t) < p̂k(t) + ϵk(t)

=⇒ pi + 2ϵi(t) > pj − 2ϵj(t) or pi − 2ϵi(t) < pk + 2ϵk(t)

=⇒ pi + 2ϵi(t) ≥
pj + pi

2
or

pj + pi
2

≥ pj − 2ϵj(t) or

pi − 2ϵi(t) ≤
pi + pk

2
or

pi + pk
2

≤ pk + 2ϵk(t)

=⇒ 2ϵi(t) ≥
pj − pi

2
or 2ϵj(t) ≥

pj − pi
2

or

2ϵi(t) ≥
pi − pk

2
or 2ϵk(t) ≥

pi − pk
2

=⇒ Si(t) ≤
16 log T

(pj − pi)2
or Sj(t) ≤

16 log T

(pj − pi)2
or

Si(t) ≤
16 log T

(pi − pk)2
or Sk(t) ≤

16 log T

(pi − pk)2
. (3)

Therefore if Si(t) >
16 log T

∆′2
i

for all i where, ∆′
i = min{pi −

pi−1, pi+1 − pi}, then ∄j, k such that p̂i(t) + ϵi(t) > p̂j(t)−
ϵj(t) or p̂i(t)− ϵi(t) < p̂k(t)+ ϵk(t) for all i. This means no
active arms exist, and Algorithm 2 is in the commit phase.

Proof of Lemma 3. Let us consider an algorithm Ã, where
samples are updated only when it is the head of the cascade
and everything is the same as Algorithm 2. Let TAE

s and T̃A
s

be the time after which Algorithm 2 and Ã enter commit
phase. Since samples are updated less often, Ã takes more
time to enter the commit phase; therefore, TAE

s < T̃A
s .

Note that both algorithms modify the ordering similarly
(round robin). Therefore, at any given time, Ni(t), t ≤ TAE

s

is the same for both algorithms. Since Ni(t) is a monotone
function Ni(T

AE
s) ≤ Ni(T̃

A
s).

If Et holds ∀t, then Lemma 9 also holds and arm i
is removed from active set if Si(t) > 16 log T

∆′2
i

. Then Ni

represents the upper bound on the number of times arm i is
head of the cascade in active phase for Ã. Thus Ni(T

AE
s) ≤

Ni(T̃
A
s) ≤ Ni when Et occurs ∀t.
TAE
s∑
t=1

E[Rt] =

TAE
s∑
t=1

E[Rt|Et]P(Et) + E[Rt|Ec
t]P(Ec

t)

≤
TAE
s∑
t=1

E[Rt|Et] + ∆̃maxP(Ec
t)

≤
K∑
i=1

E[Ni(T
AE
s)]∆̃i +

TAE
s∑
t=1

P(Ec
t)∆̃max

(a)

≤
K∑
i=1

E[Ni]∆̃i +
K∆̃max

T
,

where (a) is obtained by using Lemma 2.

Proof of Theorem 6. Let Et be the event that |p̂i(t) − pi| <√
2 log t
Si(t)

for all i. By Hoeffding’s inequality we have P(Ec
t) ≤

K
t2 . Let Gt be the event that all arms are ordered correctly in
time slot t. Thus Gc

t represents the event that there ∃i ∈ [K]
such that Li(t) > Li+1(t). Therefore,

P(Gc
t , Et) ≤

K−1∑
i=1

P(Li(t) > Li+1(t), Et)

=

K−1∑
i=1

P(p̂i(t)− ϵi(t) > p̂i+1(t)− ϵi+1(t), Et)

≤
K−1∑
i=1

P(pi > pi+1 − 2ϵi+1(t))

=

K−1∑
i=1

P
(
ϵi+1(t) >

pi+1 − pi
2

)

=

K∑
j=2

P

(
Sj,t <

8 log t

∆2
j

)
.

Let us define a new random variable

Zi(t) =

{
1 if Xi(t) = 1 and Xj(t) = 0,∀j ̸= i,

0 otherwise.

Note that arrivals are independent therefore {Zi(t)}t≥1

are also independent across time. Note that Zi(t) ∼
Ber(µi

∏
j ̸=i(1 − µj)) and let us define µ̄i = E[Zi(t)] =

µi

∏
j ̸=i(1 − µj). The number of user feedback samples is

lower bounded as follows
∑t

n=1 Zi(t) ≤ Si(t). Therefore

P(Gc
t , Et) ≤

K∑
j=2

P

(
Zi(t) <

8 log t

∆2
j

)
.

The regret is obtained only when the ordering is incorrect.
Let E[Rt] be the regret incurred in time slot t.

E[Rt] =E[Rt|Gt]P(Gt) + E[Rt|Gc
t]P(Gc

t)

=E[Rt|Gc
t]P(Gc

t)

=E[Rt|Et,Gc
t]P(Gc

t , Et) + E[Rt|Ec
t ,Gc

t]P(Gc
t , Ec

t)

≤∆̃max

K∑
j=2

P

(
Zi(t) <

8 log t

∆2
j

)
+ ∆̃maxP(Ec

t).

The overall regret is bounded as follows

RLCB(T)

=

T∑
t=1

E[Rt]

≤
T∑

t=1

∆̃max

K∑
j=2

P

(
Zi(t) <

8 log t

∆2
j

)
+ ∆̃maxP(Ec

t)

≤ ∆̃max

K∑
j=2

T∑
t=1

P

(
Zi(t) <

8 log t

∆2
j

)
+

T∑
t=1

∆̃max
K

t2
.

Note that for t ≥ T ′, where T ′ = 16
∆2

i µ̄i
we have 8 log t

∆2
i

<
µ̄jt
2 ,

therefore
T∑

t=1

P

(
Zi(t) ≤

8 log t

∆2
j

)
≤ 16

∆2
j µ̄j

+

T∑
t=T ′

P
(
Zi(t) <

tµ̄j

2

)

≤ 16

∆2
j µ̄j

+

T∑
t=T ′

e−tµ̄2
j/2

≤ 16

∆2
j µ̄j

+
2

µ̄2
j

.

Now, we bound the regret as follows

RLCB(T) ≤∆̃max

K∑
j=2

(
16

∆2
j µ̄j

+
2

µ̄2
j

)
+ ∆̃max

Kπ2

6

=O(1).

Proof of Lemma 5. Let τ0 = 0 and τ1, τ2, · · · be the time
slots in which sample for pi is obtained i.e. It = i.

E

[
T∑

t=1

1{Ai,k(t), E
p
i,k(t)}

]
≤E

[
T∑

t=1

1{Ep
i,k(t), It = i}

]

≤E

[
T∑

k=0

1{Ep
i,k(τk)}

]
(a)

≤1 +

T∑
k=1

e−2kϵ2

≤1 +
1

2ϵ2

=1 +
8

∆2
i,k

,

where (a) is obtained by using Hoeffdings’ inequality.

Lemma 10. If Si(t) represents the number of samples ob-
served by arm i till time t then we have,

T∑
t=1

P

(
Si(t) ≤

16 log t

∆2
i,k

)
≤ 32

∆2
i,kµ̄i

+
2

µ̄2
i

.

Proof. Let us define a new random variable

Zi(t) =

{
1 if Xi(t) = 1 and Xj(t) = 0,∀j ̸= i,

0 otherwise.

Note that arrivals are independent therefore {Zi(t)}t≥1

are also independent across time. Note that Zi(t) ∼
Ber(µi

∏
j ̸=i(1 − µj)) and let us define µ̄i = E[Zi(t)] =

µi

∏
j ̸=i(1 − µj). The number of user feedback samples is

lower bounded as follows
∑t

n=1 Zi(n) ≤ Si(t). Therefore,

T∑
t=1

P

(
Si(t) ≤

16 log t

∆2
i,k

)
≤

T∑
t=1

P

(
t∑

n=1

Zi(n) ≤
16 log t

∆2
i,k

)
Note that for t ≥ T ′, where T ′ = 32

∆2
i,kµ̄i

we have 16 log t
∆2

i,k
<

µ̄jt
2 , therefore

T∑
t=1

P

(
Zi(t) ≤

16 log t

∆2
i,k

)
≤ 32

∆2
i,kµ̄i

+

T∑
t=T ′

P
(
Zi(t) <

tµ̄i

2

)

≤ 32

∆2
i,kµ̄i

+

T∑
t=T ′

e−tµ̄2
i /2

≤ 32

∆2
i,kµ̄i

+
2

µ̄2
i

.

Proof of Lemma 6. Let Li(t) =
16 log t
∆2

i,k
then,

T∑
t=1

1{Ai,k(t), Ē
p
i,k(t), E

θ
i,k(t)}

=

T∑
t=1

1{Ai,k(t), Ē
p
i,k(t), E

θ
i,k(t), Si(t) ≤ Li(t)}

+

T∑
t=1

1{Ai,k(t), Ē
p
i,k(t), E

θ
i,k(t), Si(t) > Li(t)}.

Consider,

E

[
T∑

t=1

1{Ai,k(t), Ē
p
i,k(t), E

θ
i,k(t), Si(t) ≤ Li(t)}

]

≤
T∑

t=1

P(Si(t) ≤ Li(t))

(b)

≤ 32

∆2
i,kµ̄i

+
2

µ̄2
i

, (4)

where (b) is obtained from Lemma 10. Now consider,

E

[
T∑

t=1

1{Ai,k(t), Ē
p
i,k(t), E

θ
i,k(t), Si(t) > Li(t)}

]

≤
T∑

t=1

E [1{p̂i(t) ≥ pi − ϵ, θi(t) < pk + ϵ, Si(t) > Li(t)}]

≤
T∑

t=1

E

[
1

(
θi(t) ≤ p̂i(t)−∆i,k + 2ϵ, Si(t) >

16 log t

∆2
i,k

)]

=

T∑
t=1

E

[
1

(
θi(t) ≤ p̂i(t)−

∆i,k

2
, Si(t) >

16 log t

∆2
i,k

)]

≤
T∑

t=1

P

(
θi(t) ≤ p̂i(t)−

√
4 log t

Si(t)

)
(c)

≤
T∑

t=1

1

t2
, (5)

where (c) is obtained by using Lemma 4 of [12]. By using
(4) and (5), we get the result stated.

Proof of Lemma 7. Let Ft represents the history till time t
that is, Ft = (I1, YI1 , I2, YI2 , · · · It, YIt) and define F0 = {}.
Note that p̂i(t), distribution of θi(t), and either Ep

i (t) is true
or not is determined by Ft−1. Let Ft−1 be the instantiation
of Ft−1 where Ēp

i is true. We define qk,t := P(θk(t) <
pk + ϵ|Ft−1 = Ft−1) and θθθ−k(t) represents the vector
θθθ(t) without θk(t). Let Θi,k(t) represents the collection of
all possible values of θθθ(t) for which Ai,k(t) and Ēθ

i,k(t)
holds. Let Θi,−k(t) := {θθθ−k(t) : θθθ(t) ∈ Θi,k(t)}. Let
Mi = {j : l−1

t (j) > l−1
t (i)} represents the arms after arm

i in cascade. Then,

E
[
1{Ai,k(t), Ē

p
i,k(t), Ē

θ
i,k(t)}

]
=E

[
1{Ai,k(t), Ē

p
i,k(t), Ē

θ
i,k(t)}|Ft−1 = Ft−1

]
≤P(θj(t) ≥ pk + ϵ,∀j ∈ Mi, It = i

θθθ−k(t) ∈ Θi,−k(t)|Ft−1 = Ft−1)

=P(θk(t) ≥ pk + ϵ|Ft−1 = Ft−1).

E

 ∏
j<l−1

t (i)

(1−Xlj (t))|θθθt

 .

P(θj(t) ≥ pk + ϵ∀j ∈ Mi/{k},
θθθ−k(t) ∈ Θi,−k(t)|Ft−1 = Ft−1)

=(1− qk,t).E

 ∏
j<l−1

i (t)

(1−Xlj (t))|θθθ−k(t)

 .

P(θj(t) ≥ pk + ϵ∀j ∈ Mi/{k},
θθθ−k(t) ∈ Θi,−k(t)|Ft−1 = Ft−1). (6)

Consider the instance where θk(t) is modified such that
θk(t) < θi(t) and θθθ−k(t) is not modified, then

E
[
1{It = k, l−1

t (k) < l−1
t (i), Ēθ

i,k(t),

θθθ−k(t) ∈ Θi,−k(t)|Ft−1 = Ft−1}
]

>P(θk(t) < pk + ϵ ≤ θj(t),∀j ∈ Mi/{k}, It = k,

θθθ−k(t) ∈ Θi,−k(t)|Ft−1 = Ft−1).

=P(θk(t) < pk + ϵ|Ft−1 = Ft−1).

E

 ∏
j<l−1

k (t)

(1−Xlj)|θθθ−k(t)

 .

P(θj(t) ≥ pk + ϵ,∀j ∈ Mi/{k},
θθθ−k(t) ∈ Θi,−k(t)|Ft−1 = Ft−1)

≥qk,t.E

 ∏
j<l−1

i (t)−1

(1−Xlj)|θθθ−k(t)

 .

P(θj(t) ≥ pk + ϵ,∀j ∈ Mi/{k},
θθθ−k(t) ∈ Θi,−k(t)|Ft−1 = Ft−1). (7)

From (6), (7) we get

E

[
T∑

t=1

1{Ai,k(t), Ē
p
i,k(t), Ē

θ
i,k(t)}

]

≤
T∑

t=1

E

[
1− qk,t
qk,t

1{It = k, l−1
t (k) < l−1

t (i),

Ēθ
i,k(t), θθθ−k(t) ∈ Θi,−k(t)|Ft−1 = Ft−1}

]
.

Let τk,s be the time slot in which arm k is chosen for s-th
time, then we have

T∑
t=1

E

[
1− qk,t
qk,t

1{It = k, l−1
t (k) < l−1

t (i),

Ēθ
i,k(t), θθθ−k(t) ∈ Θi,−k(t)|Ft−1 = Ft−1}

]

≤
T∑

s=1

E
[
1− qk,τk,s

qk,τk,s

]
.

Lemma (Implied by Lemma 2.9 [13]). If τk,s denote the time
step at which s-th sample of arm k is observed then we have

E
[
1− qk,τk,s

qk,τk,s

]
≤

{
3
ϵ for s < 8

ϵ

Θ
(
e−ϵ2s/2 + 1

(s+1)ϵ2 e
−sDk + 1

eϵ2s/4−1

)
else,

where Dk = KL(pk, pk + ϵ).

Now, we follow a similar analysis from Lemma 3.3 of [14]
and improve the bound stated in [14].

E
[
1− qk,τk,s

qk,τk,s

]
≤

∑
0≤s≤8/ϵ

3

ϵ
+ c1.

∑
8/ϵ≤s≤T−1

e−ϵ2s/2 +
1

(s+ 1)ϵ2
e−sDk

+
1

eϵ2s/4 − 1
(a)

≤ 24

ϵ2
+ c1.

∞∑
s=1

e−ϵ2s/2 + c1.

∫ T−1

8/ϵ

1

(s+ 1)ϵ2
e−2ϵ2sds

+ c1

∫ T−1

8/ϵ

1

eϵ2s/4 − 1
ds

(b)

≤ 24

ϵ2
+

2c1
ϵ2

+
c1e

ϵ2/2

ϵ2

(
1

16ϵ
1{16ϵ < 1}+ 1

e

)
+ c1

∫ T−1

8/ϵ

1

eϵ2s/4 − 1
ds,

where c1 is a constant. (a) follows from the fact KL(p, q) ≥
|p−q|2

2 . (b) is obtained using the result from [14] and fact that∑∞
t=1 e

−at ≤ 1
a , a > 0. Consider∫ T−1

8/ϵ

1

eϵ2s/4 − 1
ds ≤

∫ ∞

8/ϵ

1

eϵ2s/4 − 1
ds

=
8

ϵ
− 4 log(e2ϵ − 1)

ϵ2
.

Therefore,

E

[
T∑

t=1

1{Ai,k(t), Ē
p
i,k(t), Ē

θ
i,k(t)}

]

≤24

ϵ2
+

2c1
ϵ2

+
c1e

ϵ2/2

ϵ2

(
1

16ϵ
1{16ϵ < 1}+ 1

e

)
+

8c1
ϵ

− 4c1 log(e
2ϵ − 1)

ϵ2
.

	Introduction
	Problem Setup
	Results
	Static Optimal Policy
	Explore and Commit
	Action Elimination
	LCB
	Thompson Sampling

	Simulations
	References
	Appendix

