
Caching Static and Transient Data
Rudrabhotla Sri Prakash

Indian Institute of Technology Bombay

sriprakash@ee.iitb.ac.in

Sharayu Moharir

Indian Institute of Technology Bombay

sharayum@ee.iitb.ac.in

ABSTRACT
Motivated by applications like Information Centric Network-

ing for the Internet of Things, we study caching policies for

the setting where the data being cached is heterogeneous

in nature. This heterogeneity is in two aspects, namely, the

lifetime of the data and the size of the data. We propose

a caching policy which divides the cache into sub-caches,

such that each sub-cache is reserved for data of a specific

size and lifetime. Via analytical results and simulations, we

show that our policy outperforms existing caching policies

for heterogeneous data.

ACM Reference Format:
Rudrabhotla Sri Prakash and Sharayu Moharir. 2018. Caching Static

and Transient Data. In The 24th Annual International Conference
on Mobile Computing and Networking (MobiCom ’18), October 29-
November 2, 2018, New Delhi, India. ACM, New York, NY, USA,

3 pages. https://doi.org/10.1145/3241539.3267770

1 INTRODUCTION
This work is motivated by the communication paradigm of

Information Centric Networking (ICN). In ICN, each piece

of data is assigned a unique name and an interested receiver

requests for a specific piece of data instead of requesting to

communicate with the source of the data. To facilitate ICN,

nodes in the communication network are equipped with stor-

age capabilities so that data can be cached at intermediate

nodes. When a request for a specific data is received, it can

be served by any node in the network which has that data in

its cache. Potential benefits of ICN over IP-based communi-

cation are lower delay, reduction in bandwidth consumption,

and lowered energy consumption [1].

This work was supported by the Bharti Centre for Communications at IIT

Bombay. Sharayu Moharir’s research was funded in part by a seed grant

from IIT Bombay, and an Indo-French grant “Machine learning for network

analytics".

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

MobiCom ’18, October 29-November 2, 2018, New Delhi, India
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5903-0/18/10.

https://doi.org/10.1145/3241539.3267770

The Internet of Things (IoT) is an application which ben-

efits from ICN based communication as many IoT applica-

tions are information-centric in nature [1, 5]. In [5], it was

observed that the performance of ICN for IoT depends heav-

ily on the caching policies used by various nodes in the

network. Since the data produced in such networks can be

heterogeneous in nature, the focus of this work is on design-

ing caching strategies for heterogeneous data. We capture

this heterogeneity via two attributes.

The first attribute is the lifetime of the data, i.e., the dura-

tion for which this data is useful and can be used to serve

requests. This duration could be finite (transient data) or

infinite (static data). While the classical caching literature

focuses on static data, more recent works have looked at the

problem of caching transient data [4]. Our setting allows for

the data to be cached to be of either type, thus generalizing

the existing body of work on caching.

The second attribute is the size of the data being cached.

While the problem of caching static data of different sizes has

been studied in [2, 7], to the best of our knowledge, this work

is the first attempt at designing universal caching policies

that work for both transient and static data of different sizes.

In this work, we consider a system consisting of a single

cache which stores and serves data of different sizes and life-

times generated by multiple data producers. In an IoT system

like a smart home, these producers are sensors which contin-

uously sense potentially time-varying quantities. When the

data of such a producer is requested and is available in the

cache, the request can be served using the cached data only

if its lifetime hasn’t expired. In all other cases, fresh data

is fetched from the producer to serve the request. The goal

is to design caching policies which maximize the fraction

of requests served using the cache, popularly known as the

cache hit-rate.

1.1 Our Contributions
We focus on a class of policies called Cache-Split policies.

Any policy in this class divides the available cache into sub-

caches with each sub-cache reserved for data of a specific

size and lifetime. We characterize the upper bound on the

hit rate of each such sub-cache as a function of the size and

lifetime of the data it caches (Theorem 3.1). Next we provide

an approximation of the performance of the First In First

Out (FIFO) policy for each sub-cache as a function of the size

and lifetime of the data it caches (Proposition 3.2). Under

https://doi.org/10.1145/3241539.3267770
https://doi.org/10.1145/3241539.3267770


this approximation, we show that FIFO is an optimal caching

policy for each sub-cache (Corollary 3.3). If each sub-cache

implements FIFO, we characterize the optimal cache split

across various data types (Theorem 3.4). In addition, via

simulations, we show that our cache split followed by FIFO

policy outperforms existing policies designed for static data

of heterogeneous sizes.

2 SETTING
We consider a system of N producers, where each producer

produces time varying data. Any request for the producers’

data is forwarded through a router which has a local cache

with limited memory. In addition, if needed, the router can

fetch data directly from the producers to serve requests. Each

producer (say Producer i) has three attributes associated with
it, namely, its popularity (p̃i ), i.e., the fraction of arriving

requests that are for the producer’s data, lifetime (F̃i ), i.e.,
the duration for which the data of the producer can be used

to serve incoming requests, and the size of the data (S̃i ) of
the producer.

Multi-Class Producer Model: We consider a multi-class pro-

ducer model, where the N producers are divided K (≤ N )

classes. The number of producers in Class j is denoted by

Nj . The data of producers belonging to a class have the same

popularity, lifetime, and size. We denote the probability for a

request, lifetime, and size of data of a producer in Class j by
pj , Fj , and S j respectively, i.e., if Producer i belongs to Class

j, then p̃i = pj , F̃i = Fj , and S̃i = S j .
Request Model: Requests arrive at the router according to a

Poisson process with parameter 1. For each incoming request,

p̃i is the probability of the request being for Producer i .
Storage and Service Model: The router’s cache has memory

of C units. A request for Producer i’s data is served via the

cache if the lifetime of the cached data of Producer i has not
expired, i.e., a request for Producer i arriving at time t can be

served by the router only if the cached data of Producer i was
fetched from the producer after time t − F̃i . If either Producer
i’s cached data has expired or Producer i’s data is not cached
at all, the request is served by fetching data directly from

the producer. On fetching data from the producer, the router

can decide whether to cache it or not. Note that the router

fetches data from a producer only when an incoming request

cannot be served via its cache.

Goal: We call the event of a request being served by the

router as a cache hit and its complement as a cache miss. Our

goal is to design caching policies which maximize the cache

hit-rate, i.e., the fraction of requests that result in cache hits.

3 MAIN RESULTS AND DISCUSSION
Our key contribution is a caching policy which divides the

cache into multiple sub-caches with each sub-cache being

reserved for a class of producers. We focus on this class of

policies because of their simplicity and because they are

known to perform well in the setting where all producers are

static, but their data is of different sizes [3]. In Section 4, we

compare the performance of our policy with other policies

which don’t split the cache into sub-caches.

3.1 Converse for each Sub-cache
Our first result provides an upper bound on the hit-rate for

a sub-cache as a function of the popularity, lifetime and size

of the data of the class of producers corresponding to the

sub-cache. This result follows from Proposition 1 in [4].

Theorem 3.1. Let the sub-cache reserved for Classw have
memory Cw and let h∗w be the maximum hit rate for the sub-
cache, then we have that,

h∗w ≤ min

{
pw

Cw

Sw
,Nwpw

pwFw
1 + pwFw

}
.

This result provides a benchmark against which the per-

formance of specific caching policies can be compared.

3.2 First In First Out (FIFO) Policy
As the name suggests, First In First Out (FIFO) is a caching

policy in which the contents are evicted from the cache in the

order in which they are brought into the cache. Formally, on

a cache miss, the requested data is fetched and stored in the

cache and in order to make space for this newly fetched data,

that cached content which was brought in least recently

is evicted from the cache. The computational complexity

for FIFO is O(n) for search, and O(1) for each insertion and

eviction.

An approximation for the hit rate of the FIFO policy for

static data of equal sizes is given in [6]. This approximation

is obtained by mapping the evolution of the FIFO cache to

that of an M/G/1/1 queue such that the cache hit-rate is equal

to the blocking probability of the queue. For the next result

we extend this technique to our setting where the data being

cached is transient.

Proposition 3.2. LethFIFOw be the hit-rate of the FIFO policy
for a sub-cache with size Cw reserved of data of producer class
w , then we have that,

hFIFOw ≈ min

{
pw

Cw

Sw
,Nwpw

pwFw
1 + pwFw

}
.

We evaluate the accuracy of this approximation by com-

paring it with the simulated hit-rate of the FIFO policy in

Figure 1. Here, we consider a class of 100 producers with

popularity of 0.01 and data size of 1 unit. We vary the cache

size and lifetime of the data. We note that the approximation

is quite accurate for all cases considered.

The following result is a consequence of Theorem 3.1 and

Proposition 3.2.



10 15 20 25 30 35 40

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Cache size

H
it 

ra
te

Simulation for F=5

Simulation for F=25

Simulation for F=50

Our approximation for F=5

Our approximation for F=25

Our approximation for F=50

Figure 1: Comparison of the simulated performance of
FIFO with the approximation derived in Proposition 3.2

Corollary 3.3. Under the approximation given in Proposi-
tion 3.2, FIFO is an optimal policy for each sub-cache.

3.3 Our Policy: Split Cache + FIFO
As mentioned above, our policy is to divide the cache into

sub-caches with each sub-cache being reserved for a class of

producers. Since FIFO is an optimal policy for each sub-cache,

we use FIFO within each sub-cache.

We next discuss how we determine the split of the cache

into sub-caches.

Theorem 3.4. LetCw be the memory allocated to Sub-cache
w which is reserved for Class w producers. If each sub-cache
uses the FIFO policy, the optimal split of the cache is the solution
to the following optimization problem.

maximize
C1,C2, ...,CK

K∑
w=1

pw
Sw

min

{
Cw ,NwSw

pwFw
1 + pwFw

}
subject to

K∑
w=1

Cw ≤ C .

Without loss of generality, let the producer classes be indexed

in decreasing order of
pw
Sw

, i.e.,
p1
S1

≥
p2
S2

≥ · · · ≥
pK
SK

. Let

Cw,sat = NwSw
pw Fw

1+pw Fw
and j∗ be such that

∑j∗−1
w=1Cw,sat < C

and
∑j∗
w=1Cw,sat ≥ C . The solution to the problem is

Cw =


Cw,sat w < j∗

C −
∑j∗−1

i=1 Ci,sat w = j∗

0 otherwise .

Theorem 3.4 thus gives the optimal split of the cache

into sub-caches when each sub-cache implements the FIFO

caching policy. The computational complexity of finding the

optimal cache split is O(K logK). Once this split is deter-

mined, on each request arrival, the request is forwarded to

the relevant sub-cache, thus simplifying the search opera-

tion.

4 SIMULATION RESULTS
In this section we compare the performance of our policy

with three other policies. The policies we compare against

are the Adapt size policy proposed in [2], the LRU-S policy

proposed in [7] and the classical LRU policy. The first two

policies are designed for caching static data of different sizes.

The parameters used for the simulation areK = 2,N1 = 50,

N2 = 50, p1 = 0.014, p2 = 0.006, F1 = 50, F2 = ∞, S1 = 1,

S2 = 8 and we vary cache size from 10 to 35 units. We see

that our policy outperforms the three other policies.

10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

Cache size

H
it 

ra
te

Split Cache + FIFO

Adapt Size

LRU-S

LRU

Figure 2:Comparison of the performance of theCache Split
+ FIFO policy with other policies

REFERENCES
[1] Marica Amadeo, Claudia Campolo, Jose Quevedo, Daniel Corujo, An-

tonella Molinaro, Antonio Iera, Rui L Aguiar, and Athanasios V Vasi-

lakos. 2016. Information-centric networking for the internet of things:

challenges and opportunities. IEEE Network 30, 2 (2016), 92–100.

[2] Daniel S Berger, Ramesh K Sitaraman, and Mor Harchol-Balter. 2017.

AdaptSize: Orchestrating the Hot Object Memory Cache in a Content

Delivery Network.. In NSDI. 483–498.
[3] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti.

2016. Cliffhanger: Scaling Performance Cliffs in Web Memory Caches..

In NSDI. 379–392.
[4] Santosh Fatale, Sri Prakash, and Sharayu Moharir. 2018. Caching

Polices for Transient Data. (2018). https://www.dropbox.com/s/

mw7tziaumbflxg8/main.pdf?dl=0

[5] Mohamed Ahmed M Hail, Marica Amadeo, Antonella Molinaro, and

Stefan Fischer. 2015. On the performance of caching and forwarding in

information-centric networking for the IoT. In International Conference
on Wired/Wireless Internet Communication. Springer, 313–326.

[6] Valentina Martina, Michele Garetto, and Emilio Leonardi. 2014. A

unified approach to the performance analysis of caching systems. In

INFOCOM, 2014 Proceedings IEEE. IEEE, 2040–2048.
[7] David Starobinski and David Tse. 2001. Probabilistic methods for web

caching. Performance evaluation 46, 2-3 (2001), 125–137.

https://www.dropbox.com/s/mw7tziaumbflxg8/main.pdf?dl=0
https://www.dropbox.com/s/mw7tziaumbflxg8/main.pdf?dl=0

	Abstract
	1 INTRODUCTION
	1.1 Our Contributions

	2 SETTING
	3 MAIN RESULTS AND DISCUSSION
	3.1 Converse for each Sub-cache
	3.2 First In First Out (FIFO) Policy
	3.3 Our Policy: Split Cache + FIFO

	4 SIMULATION RESULTS
	References

