
Caching Policies for Transient Data
Santosh Fatale, Sri Prakash and Sharayu Moharir

Department of Electrical Engineering
Indian Institute of Technology Bombay

Email: sfatale@ee.iitb.ac.in, sriprakash@ee.iitb.ac.in, sharayum@ee.iitb.ac.in

Abstract—This work focuses on designing caching policies for
transient data, i.e., data which can be used to serve requests only
for a finite duration of time after which it becomes redundant.
We first characterize the fundamental limit on the performance
of caching policies for transient data and characterize the
performance of traditional caching policies like LRU for this
setting. Traditional caching policies often make decisions based
on the popularity of the data being cached. We propose a new
caching policy which uses both the popularity and the residual
lifetime (time remaining before the data becomes redundant)
to make caching decisions. We show that in the setting where
data being cached is transient, our policy outperforms traditional
caching policies.

I. INTRODUCTION

The motivation for this work comes from the increasing
popularity of the Internet of Things (IoT) and the concept of
Information Centric Networking (ICN). ICN assigns a unique
name to each piece of data and consumers request for a
specific piece of data instead of requesting to communicate
with the producer of the requested data. In addition, nodes
in the network are equipped with storage capabilities and data
can be cached at intermediate nodes in the network. Since ICN
allows data to be cached close to the consumers, the benefits
of ICN over IP-based communication include a reduction in
retrieval delay, lower bandwidth consumption, and reduced
energy consumption [1].

Since many IoT applications are information-centric, the
idea of using ICN for IoT has gained traction [1]–[3]. The
benefits of using ICN for IoT network have been explored
in [2] where it was found that in-networking caching leads
to lower delays and lower power consumption. In [3], it was
observed that the performance of ICN for IoT depends heavily
on the caching policies used by various nodes in the network.

In this work, we study systems consisting of multiple sen-
sors called producers, each of which measures a time-varying
signal, consumers, and an intermediate router as illustrated
in Figure 1. Consumers interested in the measurements of
these sensors access them via the intermediate router which is
equipped with storage capabilities. In most IoT applications,
the measurements of the sensors are used by the consumers to
make control decisions. Since using stale measurements can
lead to sub-optimal decisions, we focus on the setting where
each request has a specific freshness requirement, i.e., a request
received at time t for Producer i’s measurement can only be
served using a measurement collected after time t−Fi, where
Fi is the freshness requirement of the request. The need for
fresh measurements makes the data being cached transient, i.e.,
once fetched and stored, the data can be used to serve requests
for a specific amount of time and becomes stale thereafter. The
transient nature of data is the key difference between caching

Cache Consumer Producer

Wireless Access Point

Fig. 1: A system consisting of multiple sensors, a router and
consumers. The sensors measure time-varying signals and consumers
interested in the measurements of the sensors access them via a router.
The router is equipped with storage resources to cache data.

for IoT applications as compared to applications like Video-
on-Demand.

Traditional caching policies like Least Recent Used (LRU)
and Least Frequently Used (LFU) make caching decisions
based on the popularity of the data being cached. In this work,
a consequence of the transient nature of the data being cached
is that every piece of data is characterized by two attributes,
namely, its popularity and its residual life-span, i.e., the time
remaining before the data becomes stale and can’t be used to
serve requests. Since traditional caching policies make caching
decisions purely based on the popularity of the data, they are
sub-optimal to cache transient data. The goal of this work is
to design efficient caching strategies for transient data.

A. Contributions

The main contributions of this work are as follows.
– We prove a fundamental limit on the performance of

any caching policy (Proposition 1) and characterize the
performance of traditional caching policies for caching
transient data (Propositions 2-4). We validate our theo-
retical results via simulations.

– Next, we propose a new caching policy called Least
Useful (LU) which uses the popularity as well as the
residual life-span to make caching decisions. We provide
a theoretical characterization of the performance of the
LU policy (Proposition 5).

– We show that our policy outperforms traditional caching
policies via extensive simulations.

B. Related Work

Caching policies for transient data have been studied in [4]–
[10]. Closest to this work, in [4], the performance of a system
similar is studied for a time-slotted setting where exactly one
request arrives at the beginning of each time-slot. We focus

on the setting where requests arriving according to a Poisson
process. In [5], [6], the authors consider the setting where
there are no hard freshness constraints, however, the system
pays a cost if requests are served using stale data. In this work,
requests have hard freshness requirements, thus differentiating
our work from [5], [6]. In [7], [8], a single producer system is
considered where the producer decides when to send updates
to the cache (push-based communication). The updates sent by
the producer enter a queue and are sent to the router according
to queue’s service process. In [7] the focus is on studying
the impact of various queuing disciplines like M/M/1, M/D/1,
D/M/1. In [8], the authors evaluate the benefits of employing
packet management on the system studied in [7]. Like [7]
and [8], [9] focuses on a push-based setting where sensors
send updates to the cache. The caching problem is modeled
as an optimization problem and the objective is to minimize
the time average of the weighted sum of ages of the cached
data. [10] focuses on caching strategies for the setting where
the popularity of a content varies with its freshness. The key
takeaway in [10] is that, in the setting where popularity varies
with freshness, the optimal caching policy is to cache the most
popular contents at a given time. Our work differs from [10]
because, in our setting, the popularity of producers remains
constant, however, a measurement taken from a sensor is useful
only for a finite amount of time after it is taken.

II. SETTING

We study a system consisting of N sensors (Figure 1), each
measuring a different time-varying signal. We refer to these
sensors as producers (since they are the source of data in the
system). These producers communicate with a router equipped
with limited storage capabilities. All entities interested in the
producers’ measurements can access them via this router.

A. Request Model

Requests for the producers’ measurements arrive according
to a Poisson process with rate one. The probability of an
incoming request being for Producer i is denoted by λi. In
addition, each request for Producer i’s data has a freshness
requirement Fi, i.e., a request made for Producer i’s data at
time t can only be served by a measurement made by Producer
i after time t − Fi. The Fis are fixed and determined based
on the nature of the signal each producer is measuring. For
example, Fi is low if Producer i is measuring a highly time-
varying signal and high for slowly varying signals. Examples
of such processes include:

Example 1: (Multi-class model) The producers are divided
into K classes where all producers in a class have the same
λ value and freshness requirement. More specifically, the
probability of an incoming request being for Producer i in
Class k is λi = λ(k), and all requests for the data of Producer
i in Class k have a freshness requirement of Fi = F(k). If
the number of producers in Class k is denoted by Nk, the
following condition is satisfied by the λ(k)s:

K∑
k=1

Nkλ(k) = 1.

Example 2: (Zipf popularity and uniform freshness) The λis
follow the Zipf distribution, i.e.,

λi = c(β)i−β , with c(β) =

(
N∑
i=1

λi

)−1
,

where β > 0 is the Zipf parameter. Requests for all producers
have a freshness requirement of F units.

B. Storage Model

The router has a storage capacity of C units where each
producer’s data occupies one unit of space. This one unit
includes the value measured by the producer as well as the
time-stamp indicating the time at which this measurement was
fetched and cached.

C. Service Model

When a request for Producer i’s data is received by the
router (say at time t), it checks if it has a fresh measurement
from Producer i stored (collected after time t− Fi). If found,
the stored measurement is used to serve the request, else, the
current value measured by Producer i is fetched by the router
to serve the request. This newly fetched data can be stored
by the router to serve future requests. Note that this work is
restricted to the setting where the router does not fetch a new
measurement from a producer unless it is required to do so to
serve a request.

D. Goal

We refer to the event of an incoming request being served
by a measurement stored at the router as a hit and the
complimentary event as a miss. There are two types of misses:
(i) the requested producer’s data is not stored in the cache, and
(ii) the requested producer’s data stored in the cache does not
satisfy the corresponding freshness requirement.

time(t)
t=0 t=7 t=9 t=12

Fig. 2: An illustration of a hit and the two types of misses.

For example (Figure 2), consider the case where Producer
10 has a freshness requirement of 4 units. For a system starting
at t = 0, the first request for Producer 10 is received at t = 7.
Since this is the first request for Producer 10, this leads to a
miss of the first type, i.e., the data of the requested producer
is not present in the cache. Assume that the data fetched from
Producer 10 at t = 7 is cached and not evicted for the next
5 time-units. When the next request is received at t = 9, the
stored data satisfies the freshness requirement and therefore,
the request leads to a hit. The third request, received at t = 12
leads to a miss because the stored data is 5 units old and
therefore, leads to a miss of the second type.

The goal is to design a caching policy which determines
which producers’ measurements should be stored at the router

at each time in order to maximize the hit rate, i.e., the fraction
of requests that result in hits.

III. ANALYSIS OF TRADITIONAL CACHING POLICIES

In this section, we characterize the performance of tradi-
tional caching policies, designed for the setting where the
content being cached is not transient. The motivation behind
this is to understand the limitations of traditional policies for
our setting where requests have stringent freshness require-
ments and subsequently use these insights to design better
caching policies. We first characterize a fundamental limit
on the performance of any caching policy in the presence of
freshness constraints.

A. Upper Bound on Hit Rate

To provide an upper bound on the hit rate for any policy,
we characterize the performance of a more powerful system
(System A) where each router has sufficient storage capacity
to simultaneously store a measurement from all N producers,
i.e., the case when C = N .

Lemma 1: Let h(A) be the hit rate in the setting where
C = N . For the request arrival process in Section II,

h(A) ≤
N∑
i=1

λ2iFi
1 + λiFi

.

Proof: Since the cache size is equal to the number of
producers in system and there is no benefit in caching more
than one measurement of the same producer, we reserve
position i in the cache for Producer i’s data and study N
decoupled cache systems, each of which stores the data of
one producer.

To prove the lemma, we map the evolution of each one of
the N caches to corresponding M/D/1/1 queues. A request
for Producer i at time t is equivalent to an arrival to the
corresponding M/D/1/1 queue. A miss at time t is equivalent
to a job entering the corresponding M/D/1/1 queue. This job
remains in service for the next Fi time-units, i.e., from time t
to t+Fi, during which all requests for Producer i are blocked
because the queue has a buffer of size one. At time t + Fi,
the job leaves the queue and the next request for Producer i
leads to a miss. Since the arrival process is Poisson, by PASTA
[11], the hit rate for Producer i is equivalent to the blocking
probability for the M/D/1/1 queue.

Using the Erlang-B formula [11] and the insensitivity prop-
erty [11], the hit rate for Producer i in System A, denoted
by h(A,i) = λiFi

1+λiFi
. It follows that h(A) =

∑N
i=1 λih

(A,i) =∑N
i=1

λ2
iFi

1+λiFi
.

Next, we prove an upper bound on the hit rate in an
alternative system (System B) where there are no freshness
constraints, i.e., Fi =∞ ∀i.

Lemma 2: Let h(B) be the hit rate in System B. For the
request arrival process discussed in Section II,

h(B) ≤
∑
i∈C

λi,

where C is the set of the C most popular producers.
Proof: Since the cache can store the data of at most C

producers, the probability of an incoming request leading to

a hit is equal to the probability of the request being for one
of the C producers whose data is cached. Let S be the set of
producers cached at a given time. It follows that

h(B) =
∑

i∈S:|S|≤C

λi ≤
∑
i∈C

λi,

where C is the set of the C most popular producers.
We use the hit rates in System A and System B to prove

the following result.
Proposition 1: Let hOPT be the hit rate of the optimal

caching policy for the request arrival process discussed in
Section II. Then,

hOPT ≤ min
{
h(A), h(B)

}
= min

{ N∑
i=1

λ2iFi
1 + λiFi

,
∑
i∈C

λi

}
,

where C is the set of the C most popular producers.
Proof: Refer to [12] for the proof details.

B. Store Most Popular (SMP)

Recall that the router has a storage capacity of C units
and each producer’s data takes one unit of storage. As the
name suggests, the SMP policy caches the C most popular
contents at the router. To use this policy in our setting where
we have stringent freshness requirements, whenever the data
stored in the router is not fresh enough to serve an incoming
request, a fresh measurement is fetched from the corresponding
producer and it replaces the older measurement of the same
producer stored at the router. Refer to Algorithm 1 for a formal
definition.

Algorithm 1: STORE MOST POPULAR (SMP)
Input: The index set C of C most popular producers,

freshness requirement of producers in C
1 Initialize: tfetch

i = −∞, ∀i ∈ C
2 On request for Producer i at time t do
3 if i ∈ C then
4 if t(fetch)

i + Fi ≥ t then
5 Serve request using cached data (cache hit)
6 else
7 Fetch data and serve request (cache miss)
8 Update Producer i’s data in cache, t(fetch)

i = t

9 else
10 Fetch data and serve request (cache miss)

Proposition 2: Let hSMP be hit rate of the SMP policy. For
the request arrival process discussed in Section II,

hSMP =
∑
i∈C

λ2iFi
1 + λiFi

,

where C is the set of the C most popular producers.
Proof: Follows using arguments similar to those used in

the proof of Lemma 1.

C. Least Recently Used (LRU)

The next policy we study is Least Recently Used (LRU)
[13]. The key idea behind the LRU policy is that on a miss,
new content is fetched and that cached content which has not
been used for the longest time is evicted from the cache to
make space to store the fetched content. We use the LRU
policy for the setting where requests have stringent freshness
requirement by making the following change. If a stale version
of the requested producer’s data is available in the cache, a
fresh measurement is fetched to serve the request and this
new data replaces the stale data of the requested producer in
the cache. Refer to Algorithm 2 in [12] for a formal definition.

To characterize the performance of the LRU policy for the
setting where requests have stringent freshness requirements,
we modify the well known Che’s approximation [14] which
characterizes the performance for LRU in the setting without
any freshness constraints. Che’s approximation is known to be
accurate for the setting without data freshness constraints [15].
The original Che’s approximation is as follows.

Approximation 1 (Che’s Approximation [14]): Consider
an alternative system (System B) where requests have no
freshness constraints. Let h(B,i)LRU be the probability that an
incoming request for Producer i in System B leads to a hit.
Then, h(B,i)LRU ≈ 1 − exp(−λiT (i)

C), where T (i)
C is the solution

to C =
∑N
j=1;j 6=i 1− exp(−λjT (i)

C).
Our next result uses Che’s approximation to characterize the

performance of LRU for caching transient data.
Proposition 3: Let hLRU(i) be the probability that an incom-

ing request for Producer i leads to a hit under the LRU policy.
For the request arrival process discussed in Section II,

hLRU(i) . min

{
h
(B,i)
LRU ,

λiFi
1 + λiFi

}
=⇒ hLRU .

N∑
i=1

λimin

{
h
(B,i)
LRU ,

λiFi
1 + λiFi

}
.

The approximation can be justified as follows. From the proof
of Lemma 1, we have an upper bound on the hit rate for
requests for Producer i in System A (h(A,i)) where C = N ,
i.e., the cache is large enough to store the data of all producers
in the system. For a system with a smaller cache, the hit rate
is upper bounded by the hit rate in System A.

From Approximation 1, we have an approximation for the
hit rate for Producer i in System B (h(B,i)) where there are
no freshness constraints. It can be shown by a stochastic
coupling argument that the hit rate in the presence of freshness
constraints is upper bounded by the hit rate in System B.

D. Random (RAND)

The next policy we study is the Random (RAND) policy. On
each miss, the RAND policy fetches the requested content and
caches it. As the name suggests, to make space for the fetched
content, the RAND evicts one of the current contents of the
cache, chosen uniformly at random. Similar to the LRU policy
discussed above, we modify the RAND policy to incorporate
data freshness constraints. Refer to Algorithm 4 in [12] for a
formal definition.

For the setting where requests have no freshness require-
ments, [16] provides an approximation for the performance

0.5 1 1.5 2

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

β

C
ac

he
 h

it
ra

tio

LRU(Appr)
SMP(Appr)
LRU(Sim)
SMP(Sim)

0.5 1 1.5 2

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

β

C
ac

he
 h

it
ra

tio

RAND(Appr)
RAND(Sim)

Fig. 3: Hit rate vs Zipf parameter (β) for Zipf popularity for cache
size C = 20, N = 100, FA = 5 and FB = 80.

for the RAND policy. We use this approximation to obtain
an approximation for the performance of the RAND policy
in the presence of freshness constraints. Refer to [12] for a
justification of this approximation.

Proposition 4: Let hRAND be the hit rate for the RAND
policy for the request arrival process discussed in Section II.
Then,

hRAND ≈
N∑
i=1

λiE[TC]−
⌊

E[TC]
Fi+1/λi

⌋
1 + λiE[TC]

,

where the value of E[TC] is computed by solving the following
equation.

C =

N∑
j=1

λjE[TC]
1 + λjE[TC]

.

E. Accuracy of our Approximations

In this section, we compare the analytical expressions
derived in Sections III-B, III-C, and III-D with simulations
results to illustrate the accuracy of our theoretical performance
guarantees. The simulation results are obtained by computing
the empirical hit rates over arrival sequences consisting of
107 requests. Refer to [12] for more extensive comparisons
between simulated and analytical results. Due to space con-
straints, in this version, we present results for the following
request process. Producer popularity follows Zipf’s Law (de-
fined in Section II) with Zipf parameter β > 0. The freshness
requirement for the five most popular producers is denoted by
FA and the freshness requirement for the remaining producers
is denoted by FB .

In Figure 3, we compare the simulation and approxima-
tion results for different popularity profiles. In Figure 4, we
compare the simulation and approximation results for different
freshness requirements. The simulated and analytically com-
puted values are very close to each other, especially for LRU
and SMP. The approximations for RAND are comparatively
less accurate.

IV. OUR CACHING POLICY: LEAST USEFUL

The policies discussed in Section III make caching decisions
independent of the residual lifetime of the data, where the
residual lifetime of a data is defined as the duration of time

0 0.5 1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

F
A
/F

B

C
ac

he
 h

it
ra

tio

LRU(Appr)
SMP(Appr)
LRU(Sim)
SMP(Sim)

0 0.5 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

F
A
/F

B

C
ac

he
 h

it
ra

tio

RAND(Appr)
RAND(Sim)

Fig. 4: Hit rate vs freshness requirement for Zipf popularity for cache
size C = 20, β = 0.8, N = 100.

from the current time to the time when the data will become
stale. In this section, we propose a policy called Least Useful
(LU) which takes into account the popularity as well as the
residual lifetime of each data to make caching decisions.

The key decision a caching policy makes is what to evict
from the cache to make space for freshly fetched data. The LU
policy evicts the data with the minimum expected number of
requests in its residual lifetime. This is motivated by the fact
that the data of a popular producer about to go stale could be
less useful than the data of a less popular producer with a large
residual lifetime because the number of requests served by the
latter could be larger. If the expected number of requests in
the residual lifetime of the newly fetched data is less than the
corresponding values of all data currently in the cache, the
fetched content is not stored. Refer to Figure 2 for a formal
definition of the LU policy.

Algorithm 2: LEAST USEFUL (LU)
Input: Freshness requirement (Fi) and popularity (λi)

of the N producers
1 Initialize t(fetch)

i = −∞, for 1 ≤ i ≤ N , CLU = ∅
2 On request for Producer i at time t do
3 if i ∈ CLU then
4 if t(fetch)

i + Fi ≥ t then
5 Serve request using cached data (cache hit)
6 else
7 Fetch data and serve request (cache miss)
8 Update Producer i’s data in cache, t(fetch)

i = t

9 else
10 Fetch data and serve request (cache miss)
11 Compute vj = λi(t

(fetch)
j + Fj − t), ∀j ∈ CLU

12 if λiFi > min
j∈CLU

vj then

13 CLU = (CLU \ {j∗}) ∪ {i} where
j∗ = arg min

j∈CLU
vj

14 t(fetch)
i = t

A. Performance Guarantees for the LU Policy

Our next result provides a lower bound on the hit rate of
the LU policy.

Proposition 5: Without loss of generality, let the producers
be indexed in decreasing order of the product of their popu-
larity and freshness constraints, i.e., λ1F1 ≥ λ2F2 ≥ · · · ≥
λNFN . Let hLU be the hit rate for the LU policy and C be
the cache size. For the request arrival process in Section II,

hLU ≥
C−1∑
i=1

λ2i F̂i

1 + λiF̂i
, where F̂i = Fi −

λCFC
λi

.

Proof: Recall that the LU policy does not store more than
one measurement from the same producer. Since producers are
indexed in decreasing order of the product of their popularity
and freshness constraint, for i < C, when Producer i’s data is
fetched, the product of its popularity and residual lifetime, i.e.,
λi × Fi is more than the popularity-residual lifetime product
of at least one of contents currently in the cache. Therefore,
for i < C, when Producer i’s data is fetched, the LU policy
stores it in the cache.

Once stored, the data for Producer i for i < C is evicted
from the cache only when its popularity-residual lifetime
product is the least among the current contents of the cache.
Since producers are indexed in decreasing order of the product
of their popularity and freshness constraint and the cache can
store the data of C producers, the minimum popularity-residual
lifetime product among the cached data at any time is upper
bounded by λCFC . Recall that tfetch

i is the time at which the
latest measurement was fetched from Producer i. Therefore,
if the data of Producer i where i < C is evicted at time t, it
follows that

λi(t
fetch
i + Fi − t) ≤ λCFC =⇒ t− tfetch

i ≥ Fi −
λCFC
λi

.

Therefore, once fetched and cached, the data of Producer i for

i < C stays in the cache for at least Fi −
λCFC
λi

units.

The result then follows using arguments similar to those in
the proof of Lemma 1.

B. Simulation Results

In this section, we compare the performance of the proposed
policy (LU) with policies described in Section III. Refer
to [12] for more extensive comparisons. We also compare
the performance of the LU policy with the upper bound
proved in Section III-A. The simulation results are obtained
by computing the empirical hit rates over arrival sequences
consisting of 107 requests, averaged over 100 iterations. For all
the data points reported in this section, the standard deviation
is within 2% of the reported average values.

We present results for the following request process. Pro-
ducer popularity follows Zipf’s Law (defined in Section II)
with Zipf parameter β > 0. We divide the producers into three
classes, i.e., Class A, Class B and Class D. All producers in
Class A, Class B and Class D have freshness requirements of
FA, FB and FD respectively with FA = FD and FB = γ×FA,
where γ is a constant > 1.

In Figure 5, we plot the performance of caching policies
for different cache sizes. In Figure 6, we plot the performance

10 15 20 25 30 35 40
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Cache size

C
ac

he
 h

it
ra

tio

UB
LU
LRU
RAND
SMP

Fig. 5: Hit rate for Zipf popularity for β = 0.8, FA = 5, γ = 100,
N = 400. The LU policy outperforms the LRU, RAND and SMP
policies for all values considered. The performance of all four polices
improves as the cache size increases.

0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

β

C
ac

he
 h

it
ra

tio

UB
LU
LRU
RAND
SMP

Fig. 6: Hit rate for Zipf popularity for C = 20, FA = 5, γ = 100,
N = 100. The LU policy outperforms the LRU, RAND and SMP
policies for all values considered. The performance of all four polices
improves as β increases.

of caching policies for different popularity profiles. In Figure
7, we compare the performance of the caching policies for
different freshness requirements. For all cases considered, LU
outperforms the traditional policies and its performance is
close to the upper bound obtained in Proposition 1. When
the freshness requirement is uniform across producers, Figure
7 shows that SMP outperforms LRU and RAND.

V. CONCLUSIONS

Motivated by applications like Information Centric Net-
working for the Internet of Things, we focus on designing
caching policies for the setting where the data being cached is
transient in nature. We show that traditional caching policies
which make eviction decisions agnostic to the residual lifetime
of the data being cached are sub-optimal. We characterize
the fundamental limitation on the performance of any caching
policy for this setting. Next, we propose a new policy which
takes into account the residual lifetime of the cached contents
in addition to their popularity to make caching/eviction de-
cisions. Via extensive simulations, we show that our policy
outperforms traditional caching policies and its performance
is close to that of the optimal caching policy.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

F
A
/F

B

C
ac

he
 h

it
ra

tio

UB
LU
LRU
RAND
SMP

Fig. 7: Hit rate for Zipf popularity for C = 20, β = 0.8, N = 100.
The LU policy outperforms LRU, RAND and SMP policy.

REFERENCES

[1] M. Amadeo, C. Campolo, J. Quevedo, D. Corujo, A. Molinaro, A. Iera,
R. L. Aguiar, and A. V. Vasilakos, “Information-centric networking for
the internet of things: challenges and opportunities,” IEEE Network,
vol. 30, no. 2, pp. 92–100, 2016.

[2] J. Quevedo, D. Corujo, and R. Aguiar, “A case for icn usage in iot
environments,” in Global Communications Conference (GLOBECOM),
2014 IEEE. IEEE, 2014, pp. 2770–2775.

[3] M. A. M. Hail, M. Amadeo, A. Molinaro, and S. Fischer, “On the
performance of caching and forwarding in information-centric network-
ing for the iot,” in International Conference on Wired/Wireless Internet
Communication. Springer, 2015, pp. 313–326.

[4] P. Poojary, S. Moharir, and K. Jagannathan, “Caching under content
freshness constraints,” arXiv preprint arXiv:1712.10041, 2017.

[5] S. Vural, P. Navaratnam, N. Wang, C. Wang, L. Dong, and R. Tafazolli,
“In-network caching of internet-of-things data,” in Communications
(ICC), 2014 IEEE International Conference on. IEEE, 2014, pp. 3185–
3190.

[6] S. Vural, N. Wang, P. Navaratnam, and R. Tafazolli, “Caching transient
data in internet content routers,” IEEE/ACM Transactions on Networking,
vol. 25, no. 2, pp. 1048–1061, 2017.

[7] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in 2012 Proceedings IEEE INFOCOM, March 2012, pp.
2731–2735.

[8] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information
in status update systems with packet management,” IEEE Transactions
on Information Theory, vol. 62, no. 4, pp. 1897–1910, April 2016.

[9] R. D. Yates, P. Ciblat, A. Yener, and M. Wigger, “Age-optimal con-
strained cache updating,” in 2017 IEEE International Symposium on
Information Theory (ISIT), June 2017, pp. 141–145.

[10] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Information freshness and popularity in mobile
caching,” in 2017 IEEE International Symposium on Information Theory
(ISIT), June 2017, pp. 136–140.

[11] M. Harchol-Balter, Performance modeling and design of computer
systems: queueing theory in action. Cambridge University Press, 2013.

[12] S. Fatale, S. Prakash, and S. Moharir, “Caching polices for transient
data,” https://www.dropbox.com/s/mw7tziaumbflxg8/main.pdf?dl=0.

[13] A. Dan and D. Towsley, An approximate analysis of the LRU and FIFO
buffer replacement schemes. ACM, 1990, vol. 18, no. 1.

[14] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, 2002.

[15] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate ap-
proximation for lru cache performance,” in Proceedings of the 24th
International Teletraffic Congress. International Teletraffic Congress,
2012, p. 8.

[16] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to
the performance analysis of caching systems,” in INFOCOM, 2014
Proceedings IEEE. IEEE, 2014, pp. 2040–2048.

	Introduction
	Contributions
	Related Work

	Setting
	Request Model
	Storage Model
	Service Model
	Goal

	Analysis of Traditional Caching Policies
	Upper Bound on Hit Rate
	Store Most Popular (SMP)
	Least Recently Used (LRU)
	Random (RAND)
	Accuracy of our Approximations

	Our Caching Policy: Least Useful
	Performance Guarantees for the LU Policy
	Simulation Results

	Conclusions
	References

