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Abstract—We consider the problem of best arm identification
in the fixed confidence setting for a variant of the multi-arm
bandit problem. In our problem, each arm is associated with
two attributes, a known deterministic cost, and an unknown
stochastic reward. In addition, it is known that arms with
higher costs have higher rewards across every sample path. The
net utility of each arm is defined as the difference between
its expected reward and cost. We consider two information
models, namely, the full information feedback and sequential
bandit feedback. We derive a fundamental lower bound on the
sample complexity of any policy and also propose policies with
provable performance guarantees that exploit the structure of
our problem. We supplement our analytical results by comparing
the performance of various candidate policies via synthetic and
data-driven simulations.

I. INTRODUCTION

The widely studied multi-armed bandit (MAB) problem is
a sequential decision-making problem. The classical MAB
problem has K independent arms with unknown reward dis-
tributions. In each round, one of the K arms is chosen.
Multiple performance metrics have been considered including
maximizing long-term cumulative reward [1] and identifying
the arm with the maximum expected reward [2], [3].

Many variants of the MAB have been studied, see [4]
for a detailed exposition. Closest to this work, [5] focuses
on the setting where the rewards across arms are correlated.
In this setting, the reward obtained from arm i can provide
information about the reward that one might have received if
they sampled another arm j. In [5], this correlation is captured
through apriori known pseudo-rewards. These pseudo-rewards
provide us an upper bound on the expected reward from arm
j, given that the response from arm i was r. The key take-
away from [5] is that the knowledge of the pseudo rewards
can be exploited to reduce the sample complexity of best-arm
identification in multi-armed bandits in the fixed confidence
setting. In this setting, the goal is to identify the arm with the
maximum expected reward, with probability at least 1− δ for
some δ > 0.

In this work, we focus on the best-arm identification in
multi-arm bandits with additional structure. Each arm is as-
sociated with two attributes: (i) a known cost and (ii) reward
with an unknown distribution. Further, it is known that the
arms with higher costs have higher rewards for each sample-
path. Note that this sample-path correlation is different from
the correlation across arms studied in [5], which captures the
correlation across arms only through the conditional expecta-
tion of the rewards. The goal of this work is to identify the
arm with the highest utility, defined as the difference between

its expected reward and cost, with probability 1− δ for some
δ > 0.

The problem is motivated by Software as a Service (SaaS)
applications like Video on Demand (VoD) services, on-
line shopping platforms, etc. Many SaaSs offer a range of
their versions to each potential customer, where the more
expensive/resource-intensive versions provide better Quality
of Service (QoS) and/or Quality of Experience (QoE) to
the customer. An example of this is VoD services like
YouTube/Netflix where one possible measure of QoS/QoE is
the resolution of the videos streamed. The utility of the version
is defined as the difference between the reward accrued by
the customer and the cost of the version. Given the trade-off
between the cost of a version and the reward obtained by the
customers, identifying the version which provides the right
balance between the two is an important problem. While the
cost of a version is very often known/predictable, the reward
received by the customers from a version is often subjec-
tive/unknown and has to be estimated by collecting feedback
from the customers. This motivates the learning problem of
identifying the “best” version of the service efficiently, which
matches the correlated best-arm identification problem studies
in this work with each arm representing a different version of
the service.

A seemingly related variant of the classical MAB is that
of structured bandits wherein the mean rewards of the arms
are related to each other. The best-arm identification problem
has been studied for various special cases of structured bandits
such as linear [6], [7], generalized linear [8], and graphical
[9] bandits. A key difference between structured bandits and
the correlated bandits model studied in this work is that in the
former, while the mean rewards of the various arms are related
to each other, the reward realizations in any given round are
not necessarily correlated unlike the latter which considers a
specific model for such sample-path correlation.

A. Our Contributions
We consider multiple observation models. Let ∆ denote the

gap between the expected utility of the best and the second
best arm.

1) Full information feedback: In this setting, the agent
observes the reward of all K arms in each round. We first
characterize a lower bound of Ω

(
log(1/δ)

∆2

)
on the number of

rounds needed by any algorithm to output the best arm with
probability at least 1 − δ. We propose a UCB-based policy
to identify this best arm for this setting. We show that with
probability at least 1−δ the proposed policy identifies the best
arm in O

(
log(K/δ)

∆2

)
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2) Sequential bandit feedback: In this setting, in each
round, the agent sequentially selects arms and observes their
corresponding rewards. Thus, based on the history of the
observed rewards, the agent can either select the next arm
to sample in the current round, or decide to end this round
and move to the next round. Note that the lower bound of
Ω
(

log(1/δ)
∆2

)
for the full information case is also a lower bound

on the number of samples needed by any algorithm to output
the best arm with probability at least 1− δ for the sequential
bandit feedback setting. We propose a policy which exploits
the sample-path correlation in rewards and show that, with
probability at least 1 − δ, the proposed policy identifies the
best arm in O

(
logK log(K/δ)

∆2

)
rounds.

We supplement our analytical results by comparing the
performance of various candidate policies via simulations
using real-world datasets.

II. PROBLEM SETUP

We consider a variant of the popular Multi-Armed Bandit
(MAB) problem. Consider K arms where each arm i is asso-
ciated with a fixed known cost ci > 0. We assume that {ci}Ki=1

form an increasing sequence, i.e., c1 < c2 < . . . < cK . In each
round t, a random reward vector Rt = (Rt1, R

t
2, . . . , R

t
K) ∈

{0, 1}K is generated where Rti denotes the reward correspond-
ing to arm i in round t. Furthermore, we assume that the
reward vector Rt satisfies the additional constraint that arms
with higher cost have higher reward in all sample paths, i.e, Rt

is composed of a sequence of zeroes followed by a sequence
of ones. For example, for K = 4, the reward vector in a
round can be one of the following K + 1 = 5 possibilities:
{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1)}. In
order to specify the probability distribution for the reward
vector Rt, let Xt ∈ {1, . . . ,K + 1} denote the position1 of
the first one in the vector Rt. Note that there is a one-to-one
correspondence between the reward vector Rt and Xt. Let
ri denote the expected value of the reward from arm i, i.e.,
ri = E[Rti] . It follows that 0 ≤ r1 < r2 < . . . < rK ≤ 1. Let
r0 = 0 and rK+1 = 1. Therefore, P (Xt = i) = ri − ri−1 for
1 ≤ i ≤ K + 1.

From the above description, it follows that the different
arms generate correlated rewards in each given round. The
reward vectors across rounds are assumed to be identically
and independently distributed (i.i.d.). The expected net utility
of arm i is defined as µi = ri − ci and the arm with
the highest net utility is referred to as the best arm, i.e.,
i? = arg max

i
µi. Let (i) denote the index of the i-th best

arm in terms of net utility, i.e., µ(1) > µ(2) > . . . > µ(K).
From above, the index i? is the same as (1). The utility gap
between sub optimal arm i and best arm i? is defined as
∆i = (r(1) − c(1)) − (ri − ci). The minimum utility gap is
then given by ∆min

∆
= ∆(2) =

(
r(1) − c(1)

)
− (r(2) − c(2)).

Consider an agent which does not apriori know the under-
lying reward vector distribution, and whose goal is to use the
reward vector observations (or part thereof) to identify the best
arm i? with probability at least 1 − δ, for any given δ > 0.
We consider two different observation models for the agent.

1For the all-zero reward vector, we will set Xt = K + 1.

(i) Full information feedback: Here, in each round t, the
agent observes the entire reward vector Rt and the
goal is to analyze the minimum number of rounds τF

needed by the agent to identify the best arm with desired
confidence 1− δ.

(ii) Sequential multi-arm feedback: In each round, the agent
sequentially selects arms and observes their correspond-
ing rewards. Thus, based on the history of the observed
rewards, the agent can either select the next arm to
sample in the current round, or decide to end this round
and move to the next round. Note that in any round t, the
number of observed components of the reward vector Rt

lies in the interval [1,K] and is potentially random. The
agent continues until it can successfully identify the best
arm and we are interested in the total number of samples
κS summed across all rounds.

III. RESULTS

A. Full information feedback

We consider the full information feedback setting here and
begin by providing an instance-dependent lower bound on
the number of rounds τF needed by any scheme which can
identify the best arm with probability at least 1− δ.

Theorem 1: Under the full information feedback setting, the
expected number of rounds needed for any Algorithm A to
output the best arm with probability at least 1 − δ is lower
bounded as

E[τF ] ≥ log(1/2.4δ)

∆2
min

(ci? − ci?−1)(ri?+1 − ri?)

ri?+1 − ri?−1
.

Proof: Here, in each round t, the agent observes the entire
reward vector Rt and the goal is to analyze the minimum
number of rounds τF needed by the agent to identify the
best arm with desired confidence 1 − δ. Also, recall that the
reward vector Rt is uniquely determined by Xt which denotes
the position of the first one in the vector. Let P represent
the distribution of Xt which is a function of the underlying
instance {ri} and recall that i? = (1) denotes the index of the
best arm for the given instance.

Now let us consider an alternate instance of rewards {r′i} for
which the index of the best arm is different from the best arm
(1) in the original setting. Let P ′ represent the corresponding
distribution of Xt under this alternate instance. By definition,
any feasible scheme A should be able to identify the best
arm under both instances with probability at least 1 − δ. Let
τF represent the stopping time and let î? denote the scheme
output. Then, by definition, we have

P
(
î? = (1)

)
≥ 1− δ, P ′

(
î? = (1)

)
≤ δ. (1)

Using Wald’s lemma, we have

EP

 τF∑
t=1

log
P (Xt)

P ′(Xt)

 = E[τF ]EP
[
log

P (Xt)

P ′(Xt)

]
= E[τF ]D(P ||P ′), (2)



where D(P ||P ′) represents the KL divergence between P and
P ′. Also,

EP

 τF∑
t=1

log
P (Xt)

P ′(Xt)


= D(P (X1, · · · , XτF )||P ′(X1, · · · , XτF )),

(a)

≥ D
(
Ber

(
P (î? = (1)

)
||Ber

(
P ′(î? = (1)

))
(b)

≥ D (Ber(1− δ)||Ber(δ)) ≥ log(1/2.4δ), (3)

where Ber(x) denotes the Bernoulli distribution with parame-
ter x ∈ (0, 1); (a) follows from the data-processing inequality
[10]; and (b) follows from (1). Combining (2) and (3), we
have that for any alternate instance of rewards {r′i} and the
corresponding induced distribution P ′ on Xt

E[τF ] ≥ log(1/2.4δ)

D(P ||P ′)
. (4)

Consider an alternate instance {r′} given by r′i = ri for all
i 6= (1) and r′(1) = r(2) − c(2) + c(1) − ε, for some 0 < ε <
r(2)−c(2)−r(1)−1 +c(1). Note that for this choice of alternate
instance, we have r(1)−1 < r′(1) < r(1) and r′(1)− c1 < r(2)−
c2. Thus, the best arm under the alternate instance is different
from the original instance. The induced distribution P ′ on Xt

differs from P at {(1), (1) + 1}, and we have

D(P ||P ′)

= (r(1) − r(1)−1) log
r(1)−1 − r(1)

r(1)−1 − r′(1)

+ (r(1)+1 − r(1)) log
r(1) − r(1)+1

r(1) − r′(1)+1

= (r(1)+1 − r(1)−1)D

(
r(1)−1 − r(1)

r(1)−1 − r(1)+1

∣∣∣∣∣∣∣∣ r(1)−1 − r′(1)

r(1)−1 − r(1)+1

)

≤
(r(1)+1 − r(1)−1)(r(1) − r′(1))

2

(r(1)−1 − r′(1))(r
′
(1) − r(1)+1)

(5)

= (∆min + ε)2 (r(1)+1 − r(1)−1)

(r′(1) − r(1)−1)(r(1)+1 − r′(1))

≤ (∆min + ε)2 (r(1)+1 − r(1)−1)

(r′(1) − r(1)−1)(r(1)+1 − r(1))
(6)

≤ (∆min + ε)2 (r(1)+1 − r(1)−1)

(c(1) − c(1)−1)(r(1)+1 − r(1))
, (7)

where (5) follows since the relative entropy between
Ber(p), Ber(q) is upper bounded as D(p||q) ≤ (p −
q)2/(q(1− q)); (6) follows since r′(1) < r(1); and (7) follows
since r′(1) − r(1)−1 = r(2) − c(2) + c(1) − ε − r(1)−1 =

[
(
r(2) − c(2)

)
−
(
r(1)−1 − c(1)−1

)
] + c(1) − c(1)−1 ≥ 0. Since

(7) holds for any ε > 0, we can choose it to be arbitrarily
small and combining with (4), we have

E[τF ] ≥ log(1/2.4δ)

∆2
min

(c(1) − c(1)−1)(r(1)+1 − r(1))

r(1)+1 − r(1)−1
.

Next, we present a scheme in Algorithm 1 which recovers
the best arm under full information feedback and derive a

bound on the number of rounds required. In Algorithm 1
we calculate the Lower Confidence Bound (LCB) and Upper
Confidence Bound (UCB) of all arm initially and eliminate
the arm j if UCB of arm j is less than LCB of any other
arm i i.e., i 6= j. We call the set of non eliminated arms as
active arms and calculate LCB and UCB of active arms only
in each round. The elimination continues till one arm is left
in the active arms set, which is the output of algorithm.

Algorithm 1: Best arm identification under full infor-
mation

Input: ci for all i, δ
Output: Best arm with probability 1-δ

1 Initialization: r̂i(0) = 0, for all i ∈ {1 · · ·K},
A1 = {1 · · ·K}, t=1;

2 while |At| > 1 do
3 for i ∈ At do
4 update sample mean:

r̂i(t) = ((t− 1)r̂i(t− 1) +Rti)/t;

5 LCBi = r̂i(t)− ci −
√

1
2t ln(K/δ);

6 UCBi = r̂i(t)− ci +
√

1
2t ln(K/δ);

7 end
8 for j ∈ At do
9 if LCBi > UCBj , for any i 6= j then

10 eliminate arm j: At+1 = At/{j};
11 else
12 continue;
13 end
14 end
15 t++;
16 if |At| = 1 then
17 return At;
18 else
19 continue;
20 end
21 end

Theorem 2: With probability at least 1 − δ, Algorithm 1
outputs the best arm under the full information feedback agent
model and the number of rounds required τF satisfies

τF ≤ O
(
log(K/δ)/∆2

min

)
with probability at least 1− δ.

Proof: Let µ̂i(n) = (
∑n
t=1R

t
i) /n − ci denote the em-

pirical estimate of the expected net utility of arm i after n
rounds and let E be the event that for all 1 ≤ i ≤ K, n ≥ 1,
we have |µi − µ̂i(n)| ≤ εn, where εn =

√
log(K/δ)

2n . Using
Hoeffding’s inequality and the union bound, we get P(Ec) ≤ δ.
Hereafter, we will assume that the event E holds,and show that
the algorithm will output the best arm.

We update the empirical estimates and confidence intervals
of the expected net utility of all arms after each round and
eliminate arm j if UCBj ≤ LCBi for any i 6= j. This
elimination continues till we are left with one arm which is
the estimate for the best arm. We demonstrate the correctness
of the scheme by showing that the true best arm (1) is
not eliminated. Assuming to the contrary, say arm (1) is



eliminated which implies there exists an arm j such that µ(1) ≤
µ̂(1)(n) + εn ≤ µ̂j(n)− εn ≤ µj which is a contradiction. To
derive an upper bound on the stopping time of the algorithm,
we note that a sufficient condition for any arm j 6= (1) to have
been eliminated by round (n) is µ̂(1) − εn ≥ µ̂j + εn. Under
the event E , we have µ̂(1) ≥ µ(1) − εn and µ̂j ≤ µj + εn, and
so the above condition is satisfied if µ(1) − 2εn ≥ µj + 2εn
or equivalently, εn ≤ (µ(1) − µj)/4, which is true for any
n ≥ 8 log(K/δ)/(µ(1) − µj)

2. Considering the worst-case
requirement across all sub-optimal arms j, we have that
the algorithm terminates by 8 log(K/δ)/(µ(1) − µ(2))

2 =
8 log(K/δ)/∆2

min rounds, which concludes the proof.
Comparing Theorems 1 and 2, we see that the optimal

sample complexity τF under the full information feedback
setting depends inversely on ∆2

min.

B. Sequential multi-arm feedback

Recall that in the sequential multi-arm feedback model, the
agent can sequentially select arms in each round t and observe
the corresponding elements of the reward vector Rt. A naive
scheme is to simulate the scheme in Algorithm 1, proposed
for the full feedback model before, by sampling all the K
arms in each round t so that the entire reward vector Rt is
observed. From Theorem 2, this gives an upper bound on the
total number of samples required of the form

κS ≤ O
(
K log(K/δ)/∆2

min

)
. (8)

In what follows, we utilize the special structure of the reward
vector in any round to propose a policy whose sample com-
plexity is much lower than the above upper bound for the naive
strategy. Since the reward vector in any round is a sequence of
zeroes followed by a sequence of ones, the agent might be able
to recover the reward of an arm from the observations of other
arms. For e.g., if in round t the agent observed the reward of
arm i, Rti as 1, then the agent will also be able to infer that the
reward of any arm j ≥ i in the same round, Rtj will also be
1. Iterating using a simple binary search procedure, for any
subset of arms S we can recover the rewards of all the arms
in S in any round by sampling at most log2(|S|+ 1) arms.

In Algorithm 2, we propose a scheme which proceeds in
rounds and in each round t, uses the above binary search
procedure to infer the components of the reward vector Rt

corresponding to a subset of arms At referred to as ‘active
arms’. As the algorithm proceeds, the active set is updated
by eliminating arms based on the reward samples observed
thus far. For each active arm, we maintain an upper and lower
confidence bound on its net utility and eliminate it whenever its
upper confidence bound (UCB) becomes lower than the lower
confidence bound (LCB) for another arm, thus indicating that
it is not the best arm. Finally, the scheme terminates when
a single active arm is left and this arm is declared as the
estimate for the best arm. The detailed pseudocode for the
scheme is provided in Algorithm 2. Note that we denote by
GetSamples(At), the binary search procedure which recovers
all the reward values in a particular round for arms in the
set At. The following result provides an upper bound on the
sample complexity of the scheme in Algorithm 2.

Theorem 3: Algorithm 2 outputs the best arm with proba-
bility at least 1 − δ under the sequential multi-arm feedback

Algorithm 2: Best arm identification with correlation
Input: ci for all i, δ
Output: Best arm with probability 1-δ

1 Initialization: r̂i(0) = 0, for all i ∈ {1 · · ·K},
A1 = {1 · · ·K}, t=1;

2 while |At| > 1 do
3 Rt

At
=GetSamples(At);

4 for i ∈ At do
5 update sample mean:

r̂i(t) = ((t− 1)r̂i(t− 1) +Rti)/t;

6 LCBi = r̂i(t)− ci −
√

1
2t ln(K/δ);

7 UCBi = r̂i(t)− ci +
√

1
2t ln(K/δ);

8 end
9 for j ∈ At do

10 if LCBi > UCBj , for any i 6= j then
11 eliminate arm j: At+1 = At/{j};
12 else
13 continue;
14 end
15 end
16 t++;
17 if |At| = 1 then
18 return At;
19 else
20 continue;
21 end
22 end

model and the total number of samples across rounds, κS , is
upper bounded as

κS ≤ 8

∆2
(2)

log(K/δ) +

γ−1∑
i=1

8

∆2
(2i)

log(K/δ).

with probability at least 1− δ, where γ = dlog2(K + 1)e.
Proof: Let µ̂i(n) = (

∑n
t=1R

t
i) /n− ci denote the empir-

ical estimate of the expected net utility of arm i after n rounds
and let E be the event that for all 1 ≤ i ≤ K, n ≥ 1, we have
|µi− µ̂i(n)| ≤ εn, where εn =

√
log(K/δ)

2n . Using Hoeffding’s
inequality and the union bound, we get P(Ec) ≤ δ. Hereafter,
we will assume that the event E holds, and show that the
algorithm will output the best arm.

In each round of the algorithm, the scheme uses the
GetSamples(At) module to recover the reward vector compo-
nents {Rti}i∈At using at most log2(|At| + 1) samples. Thus,
the number of samples in a round will be at most m once
the number of active arms |At| < 2m. From the proof of
Theorem 2, we have that the 2m-th best arm and all the
arms worse than that will be eliminated by 8

∆2
(2m)

log(K/δ)

rounds. Thus, for any round t such that 8
∆2

(2m+1)

log(K/δ) <

t < 8
∆2

(2m)

log(K/δ), the number of samples needed by
the GetSamples(At) module to recover the reward vector
components of all the active arms will be at most m + 1.
Setting dlog2(K+1)e = γ, the total number of samples across



all rounds, κS , is given by

κS ≤ γ 8 log(K/δ)

∆2
(2γ−1)

+

γ−2∑
i=1

(γ − i)

[
8 log(K/δ)

∆2
(2γ−i−1)

− 8 log(K/δ)

∆2
(2γ−i)

]

=
8

∆2
(2)

log(K/δ) +

γ−1∑
i=1

8

∆2
(2i)

log(K/δ).

Note that the sample complexity of the proposed algorithm
can be much smaller than that of the naive scheme in (8)
which samples all the K arms in each round. Also, notice
that the lower bound on the sample complexity in Theorem 1
for the full information feedback setting is also a valid lower
bound for the sequential multi-arm feedback setting. Compar-
ing the expression in the lower bound and the upper bound
on the sample complexity of the proposed scheme derived
above, we see that Algorithm 2 is order-wise optimal when∑γ−1
i=2

1
∆2

(2i)

� 1
∆2

(2)

.

IV. SIMULATIONS

In this section, we compare the performance of our proposed
policy in Algorithm 2 with various other policies mentioned
below via simulations.

A. Alternate policies

Active-P: This scheme is similar to the naive strategy, but
instead of sampling all the K arms in each round, we only
sample the arms in the active set. While this scheme samples
fewer arms in each round, it still does so in parallel unlike
our proposed scheme in Algorithm 2 which uses a sequential
strategy to further reduce the number of sampled arms.

LUCB: For the standard MAB setting a popular scheme
for best arm identification is the LUCB, which in each
round samples two arms: one with the highest sample mean
and the other with the highest upper confidence bound
amongst the remaining arms. For a target error probabil-
ity δ, the total sample complexity of LUCB is given by
O
(∑

i 6=i?
1

∆2
i

log
(
K
δ log(1/∆2

i )
))

[2]. This scheme does not
explicitly use the correlation amongst the rewards of different
arms in a round, and provides a useful baseline to compare
our proposed scheme against.

CLUCB: Recently, [5] proposed the CLUCB algorithm for
the correlated MAB setting where additional side-information
is available in the form of upper bounds on the conditional
expected rewards of the arms. In particular, in any round t
and for any pair of arms l, k, we have E[Rtl |Rtk = r] ≤ sl,k(r)
and sl,k(r) is a known upper bound on the expected reward
of arm l conditioned on the event that the reward for arm
k is r. This algorithm explicitly uses the correlation in the
arm rewards to reduce the number of samples required for
best arm identification, and achieves a sample complexity of
O
(∑

k∈C
1

∆2
k

log
(

2K
δ log(1/∆2

k)
))

where C ⊆ K represents
a set of ‘competitive’ arms [5].

To use CLUCB in our setting, we define the upper bounds on
conditional expected rewards as sl,k(r = 1) = 1, and sl,k(r =
0) equals 0 for l ≤ k and 1 otherwise. The intuition behind
this is that in any round, if the reward for arm index k is 0,
then the reward for all arms with indices smaller than k will

also be 0. However, there is no additional information on the
rewards of the arms with indices higher than k.

To compare the performance of our proposed scheme (Al-
gorithm 2) with these alternative policies, we consider the
application of identifying the best version of a Software as
a Service (SaaS) discussed in the introduction. Recall that the
SaaS is offered in a range of versions, where Version i has a
associated reward (with expected value ri) and cost (ci). The
cost of each version is known while its expected reward is
unknown and has to be estimated via user feedback. Further,
it is known that on any sample path, a version with higher cost
has higher reward. The goal is to identify the version with the
highest utility (ri− ci) with probability at least 1− δ. For our
experiments, we fix δ = 0.01.

We first discuss how we construct problem instances to
evaluate the performance of various candidate policies. In
Figure 1, each value of ρ ∈ [0, 1] on the x-axis corresponds
to a candidate arm. The cost of an arm is equal to c × ρ
for a given constant c > 0. Further, r(ρ) denotes the average
reward corresponding to this arm. It follows that the cost and
expected reward are increasing functions of ρ, thus satisfying
the structure of our problem. We consider two types of
simulation instances.

Synthetic parameters: In this set of experiments, the values
of the ris and cis are obtained from a synthetically generated
piece-wise linear function shown in Figure 1. For our exper-
iment, we choose the arms such that they are equally spaced
in the interval [0, 1].

Data-driven parameters: In this set of experiments, the
values of the ris and cis are obtained by using the GPS
trajectory dataset [11]–[13] collected as a part of the Geolife
Project by Microsoft Research Asia. More details on the
dataset and how it is used to obtain these parameter values
can be found in [14] and Section 7.2 of [15].2 We choose the
arms such that the best arm ρ∗(= arg maxρ∈[0,1] r(ρ)− c×ρ)
is always included and no arm is chosen in the interval
(ρ∗ − 0.063, ρ∗ + 0.063). The remaining arms are equally
spaced in the intervals (0, ρ∗ − 0.063) and (ρ∗ + 0.063, 1).
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Fig. 1: Synthetic and data-driven reward functions

We begin by studying the impact of the value of c on the
performance of the various policies. We select 33 values of
cis in [0, 1] including 0 and 1. We plot the average sample
complexity (over 10 runs) of Algorithm 2 (Adapt-P) and
various alternate policies discussed in Section IV-A for the
synthetic and data-driven parameter values in Figures 2 and

2The plot corresponding to the data-driven r(ρ) in Figure 1 actually
corresponds to the concave hull of the curve obtained in [14].



3 respectively. We observe that our proposed policy uses the
lowest number of samples amongst all the policies.

Fig. 2: Performance of various policies as a function of c for
synthetic parameters

Fig. 3: Performance of various policies as a function of c for
data-driven parameters

Next, we fix the value of c and consider the variation of the
sample complexity of the various schemes as we change the
number of arms. For Figure 4 we fix c = 1, note that as we
increase the number of arms, the minimum gap between the
optimal and a sub-optimal arms decreases. As expected from
the sample complexity characterization in Theorem 2, we see
in Figure 4 that the sample complexity grows with increasing
number of arms. Again, amongst all the policies, our proposed
scheme in Algorithm 2 achieves the best performance. On the
other hand, in Figure 5, we fix c = 0.8. As observed in the
previous experiments, the sample complexity of our proposed
scheme is the lowest among the various strategies.
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