
On the Regret of Online Edge Service Hosting
R Sri Prakash

IIT Bombay
sriprakash@ee.iitb.ac.in

Nikhil Karamchandani
IIT Bombay

nikhilk@ee.iitb.ac.in

Sharayu Moharir
IIT Bombay

sharayum@ee.iitb.ac.in

Abstract—We consider the problem of service hosting where
a service provider can dynamically rent edge resources via
short term contracts to ensure better quality of service to its
customers. The service can also be partially hosted at the edge,
in which case, customers’ requests can be partially served at
the edge. The total cost incurred by the system is modeled as
a combination of the rent cost, the service cost incurred due
to latency in serving customers, and the fetch cost incurred
as a result of the bandwidth used to fetch the code/databases
of the service from the cloud servers to host the service at
the edge. In this paper, we compare multiple hosting policies
with regret as a metric, defined as the difference in the cost
incurred by the policy and the optimal policy over some time
horizon T . In particular we consider the Retro Renting (RR)
and Follow The Perturbed Leader (FTPL) policies proposed in
the literature and provide performance guarantees on the regret
of these policies. We show that under i.i.d stochastic arrivals, RR
policy has linear regret while FTPL policy has constant regret.
Next, we propose a variant of FTPL, namely Wait then FTPL
(W-FTPL), which also has constant regret while demonstrating
much better dependence on the fetch cost. We also show that
under adversarial arrivals, RR policy has linear regret while
both FTPL and W-FTPL have regret O(

√
T) which is order-

optimal.

I. INTRODUCTION

Software as a Service (SaaS) instances like online naviga-
tion platforms, Video-on-Demand services, etc., have strin-
gent latency constraints in order to provide a good quality
of experience to their customers. While most SaaSs use
cloud resources, low latency necessitates the use of stor-
age/computational resources at the edge, i.e., close to the
end-user. A service is said to be hosted at the edge if the
code and databases needed to serve user queries are stored
on the edge servers and requests can be served at the edge. In
this work, the service can also be partially hosted at the edge,
in which case, customers’ requests can be partially served at
the edge [1], [2]. 1

We consider the setting where third-party resources can be
rented via short-term contracts to host the service, and the
edge hosting status of the SaaS can be dynamically changed
over time. If the service is not hosted at the edge, it can
be fetched from the cloud servers by incurring a fetch cost.
The performance of a hosting policy is a function of the
rent cost, the fetch cost, and the quality of experience of the
users. We refer to the algorithmic challenge of determining
what fraction of the service to host at the edge over time as
the service hosting problem.

Novel online service hosting policies with provable perfor-
mance guarantees have been proposed in [3], [4]. The metric
of interest in [3], [4] is the competitive ratio, defined as the

1This work is supported by a SERB grant on Leveraging Edge Resources
for Service Hosting and a SERB grant on Online Learning with Constraints.

ratio of the cost incurred by an online policy to the cost
incurred by an offline optimal policy for the same request
arrival sequence. Since the competitive ratio is multiplicative
by definition, the absolute value of the difference in the cost
incurred by an online policy and the optimal policy can be
large even though the competitive ratio of the online policy
is close to one. This motivates studying the performance
of candidate policies in terms of regret, defined as the
difference in the cost incurred by the policy and the optimal
policy. Regret is a widely used metric in online learning [5],
including recently for the caching problem [6], [7] which is
closely related to the service hosting problem. In this work,
one of our goals is to design hosting policies with provable
guarantees in terms of the regret. Another key dimension in
the performance guarantees of online policies is the assump-
tion made on the request arrival process. Commonly studied
settings include the stochastic setting and the adversarial
setting, and we provide performance guarantees for both
settings.

For the service hosting problem, [3] proposed the Retro-
Renting (RR) policy and showed that it has a constant
competitive ratio with respect to the offline optimal policy.
On the other hand, for the closely related caching problem,
several policies inspired by the recent advances in online
convex optimization have been proposed including Online
Gradient Ascent [6], Online Mirror Descent [8], and Follow
the Perturbed Leader (FTPL) [9], [7]. In particular, FTPL
has been shown to have order-optimal regret for the caching
problem in the adversarial setting [9], [7]. In this work, we
study regret for the RR and FTPL policies for the service
hosting problem, under both the stochastic and adversarial
settings. Since RR is a deterministic policy, its regret perfor-
mance in the adversarial setting is poor. On the other hand, a
limitation of FTPL is that it makes hosting decisions agnostic
of the fetch cost. As a result, in some cases, FTPL is prone to
fetching and evicting the service multiple times in the initial
time-slots when its estimate of the request arrival rate is noisy,
thus leading to poor performance.

A. Our Contributions

We propose a variant of the FTPL policy called Wait
then Follow the Perturbed Leader (W-FTPL). W-FTPL is a
randomized policy that takes into account the fetch cost in its
decision-making. More specifically, W-FTPL does not fetch
the service for an initial wait period which depends on the
request arrivals and is an increasing function of the fetch cost.
Following the wait period, W-FTPL mimics the FTPL policy.

For i.i.d. stochastic request arrivals and the regret metric,
we show that RR is sub-optimal while FTPL and W-FTPL
are both order-optimal with respect to the time horizon.

While the regret of FTPL can increase linearly with the
fetch cost, the regret of W-FTPL increases at most poly
logarithmically. The improved performance of W-FTPL over
FTPL is a consequence of the fact that W-FTPL avoids most
of the fetches made by FTPL in the initial time-slots and by
the end of the wait period, its estimate of the arrival rate is
accurate enough to avoid multiple fetches.

For the adversarial setting, we first characterize a fun-
damental lower bound on the regret of any online hosting
policy. In terms of regret, we then show that RR is strictly
suboptimal, while FTPL and W-FTPL have order-optimal
performance with respect to time.

II. SYSTEM SETUP

We consider a system consisting of a back-end server and
an edge-server to serve customers of a service. The back-end
server always hosts the service and can serve any requests
that are routed to it. In this work, we allow the service to
be partially hosted at the edge-server. When the service is
partially hosted at the edge, requests are partially served at
the edge and partially at the back-end server. Further, the
fraction of service hosted at the edge can be changed over
time. If the service is not hosted or partially hosted at the
edge, parts of the service can be fetched from the back-end
server to host at the edge. We consider a time-slotted system.

Sequence of events in each time-slot: In each time-slot,
we first make the service hosting decision for that time-slot.
Following this, requests may arrive and are served at the edge
and/or the back-end server.

Request arrivals: We consider two types of arrival pro-
cesses. The first where arrivals are stochastic across time-
slots with mean µ and the second where the arrival process
is generated by an oblivious adversary2. In either case, there
are up to κ arrivals per slot.

Costs: We model three types of costs.
- Rent cost (CPR,t): The system incurs a cost of c units

per time-slot to host the entire service at the edge. For
hosting f fraction of service, the system incurs a cost
of cf units per time-slot.

- Service cost (CPS,t): This is the cost incurred to use the
back-end server to serve (parts of) requests. If f fraction
of the service is hosted at the edge, the system incurs
a service cost of g(f) units per request, where g(f)
is a decreasing function of f . We fix g(0) = 1, i.e.,
service cost is one unit when the service is not hosted
at the edge. In [1], [2], it is shown that benefits of partial
hosting as limited to the setting where f+g(f) ≤ 1. Mo-
tivated by this, we consider the case where f+g(f) ≤ 1
for all candidate values of f .

- Fetch cost (CPF,t): The system incurs a cost of M > 1
units for each fetch of the entire service from the back-
end server to host on the edge-server. For fetching f
fraction of service, the system incurs a cost of Mf units.

We consider bounded requests, specifically, let 0 ≤ rt ≤ κ
denote the number of request arrivals in time-slot t and Rt =∑t
i=1 ri denote the cumulative requests observed by the end

of time-slot t. Further, the rent cost incurred to host the entire

2The entire request sequence is assumed to be fixed apriori.

service at the edge (c) is less than κ. This is motivated by the
fact that if κ < c, it is strictly sub-optimal to host the entire
service at the edge irrespective of the number of arrivals in
a time-slot.

Let ρPt denote the edge hosting status of the service in
time slot t under policy P . We consider the setting where
ρPt ∈ {α1, α2, · · · , αK−1, αK} and ρPt = αi means that we
host αi fraction of service at the edge-server in time-slot t.
Note that αi ∈ [0, 1] and in particular α1 = 0, αK = 1 and
we also consider αi < αj for i < j. It follows that ρPt = 1
implies that the entire service is hosted at the edge in time-
slot t, and ρPt = 0 implies that the service is not hosted at the
edge in time-slot t. The total cost incurred in time-slot t by
policy P denoted by CPt (rt) is the sum of the rent, service,
and fetch costs. It follows that

CPt (rt) = cρPt + g(ρPt)rt +M(ρPt − ρPt−1)+. (1)

Let r = {rt}t≥1 denote the request arrival sequence and
CP(T, r) denote the cumulative cost incurred by policy P in
time-slots 1 to T . It follows that

CP(T, r) =

T∑
t=1

CPt (rt).

Performance metrics: We consider regret as a performance
metric.

For i.i.d. stochastic arrivals, the regret of a policy P ,
denoted by RPS (T), is defined as the difference in the total
expected cost incurred by the policy and the optimal static
hosting policy. The optimal static hosting policy makes a
hosting decision at t = 1 using the knowledge of the
statistics of the request arrival process, but not the entire
sample-path. For ease of notation, we define µ = E[rt],
µi = cαi+g(αi)µ. It follows that the expected cost incurred
by the optimal static hosting policy in time-slots 1 to T is
mini{cαiT + g(αi)µT +Mαi}, and therefore,

RPS (T) = EP,r[CP(T, r)]−min
i
{cαiT + g(αi)µT +Mαi}

= EP,r[CP(T, r)]−min
i
{µiT +Mαi}.

For adversarial arrivals, the regret of a policy P , denoted
by RPA(T), is defined as the worst case difference in the total
expected cost incurred by the policy and the optimal static
hosting policy. The expectation is taken over the policy. It
follows that for any request sequence r ∈ R, the total cost
incurred by the optimal static hosting policy in time-slots 1
to T is mini{cαiT + g(αi)RT +Mαi}, and therefore,

RPA(T, r) = EP [CP(T, r)]−min
i
{cαiT + g(αi)RT +Mαi}

RPA(T) = sup
r∈R

(
RPA(T, r)

)
.

Goal: The goal is to design online hosting policies with
provable performance guarantees with respect to regret.

We will define some notation which will be use-
ful in our analysis. Let s = [0, α1, α2, · · · , 1]′, f =
[1, g(α1), g(α2), · · · , 0]′, and ρPt ∈ X , where X is the
collection of all possible one hot vectors in {0, 1}K . The
position of 1 in the one hot vector ρPt represents the level of
service hosted at the edge, that is ρPt = 〈ρPt , s〉. Note that

|X | = K. The total cost in slot t given in (1) can be rewritten
using the above notations as follows,

CPt (rt) = c〈ρPt , s〉+ rt〈ρPt ,f〉+M(ρPt − ρPt−1)+,

= 〈ρPt ,θt〉+M(ρPt − ρPt−1)+,

where θt = cs+ rtf .
For the ease of notation we define ∆ij = µi − µj , i? =

arg mini µi , ∆i = µi − µi? , ∆min = mini ∆i, ∆max =
maxi ∆i.

III. POLICIES

Our Policy: Our policy called Wait then Follow the Per-
turbed Leader (W-FTPL) is a variant of the popular FTPL
policy. A formal definition of FTPL is given in Algorithm 1.
FTPL is a randomized policy and is known to perform well
for the caching problem, in fact achieving order-wise optimal
regret for adversarial arrivals [7]. Under FTPL, in any time
slot t, for each i, FTPL considers the cumulative cost that
would have been incurred had the system used αi hosting
fraction in the entire duration [1, t -1], and then perturbs this
by an appropriately scaled version of a sample of a standard
Gaussian random variable. FTPL then hosts the fraction of
service for which the perturbed cost is minimum in that slot.

Algorithm 1: Follow The Perturbed Leader (FTPL)
Input: c, {ηt}t≥1, request sequece{rt}t≥1

1 Set Θ1 ← 0
2 Sample γ ∼ N (0, I)
3 for t = 1 to T do
4 host ρt ∈ arg minρ∈X 〈ρ,Θt + ηtγ〉
5 Update Θt+1 = Θt + θt

The key idea behind the W-FTPL policy is to not host
the service for an initial wait period. This is to reduce
the number of fetches made initially when estimate of the
arrivals is noisy. The duration of this wait period is not fixed
apriori and is a function of the arrival pattern seen till that
time. Following the wait period, W-FTPL mimics the FTPL
policy. Refer to Algorithm 2 for a formal definition of W-
FTPL. Let Ts be the time slot after which W-FTPL starts
acting as FTPL. Formally we define Ts = min{t : t <
(maxi6=j(Θt+1,i−Θt+1,j))

2

κ2β(logM)1+δ }, where β > 1, δ > 0 are constants
.

Retro-Renting (RR) [3]: The RR policy is a deterministic
hosting policy and it either hosts the complete service or hosts
nothing in a slot. The key idea behind this policy is to use
recent arrival patterns to make hosting decisions. We refer
the reader to Algorithm 1 in [3] for a formal definition of
the RR policy. The performance of RR with respect to the
competitive ratio was analyzed in [3].
α−RR[2] policy is modified version of RR where one

partial level of hosting the service is allowed. The formal def-
inition of α−RR is given in Algorithm 3 which is Algorithm
1 in [2]. Similar to RR the key idea behind α−RR policy is
to use recent arrival patterns to make hosting decisions. We
refer α−RR also as RR in this paper. Based on the levels of
hosting allowed it will be clear either it is α−RR or RR.

Algorithm 2: Wait then Follow The Perturbed Leader
(W-FTPL)

Input: c, M , {ηt}t≥1, {rt}t≥1, β, δ, κ
1 Set Θ1 ← 0, wait=1
2 Sample γ ∼ N (0, I)
3 for t = 1 to T do
4 if wait = 1 then
5 ρt = 0
6 else
7 host ρt ∈ arg minρ∈X 〈ρ,Θt + ηtγ〉
8 Update Θt+1 = Θt + θt
9 wait = min{wait,1

t>
(maxi6=j(Θt+1,i−Θt+1,j))2

κ2β(logM)1+δ

}

Algorithm 3: α-RetroRenting (α-RR)

1 Input: Fetch cost M , partial hosting level α2, latency
cost under partial hosting g(α2), rent cost c, request
arrival sequence {xl}tl≥0

2 Output: service hosting strategy rt+1, t > 0
3 Initialize: r1 = trecent = 0
4 for each time-slot t do
5 It = (M , g(α2), t, trecent, c, {xl}tl≥trecent

)

6 R
(τ0)
0 = [rt, rt, . . . , rt︸ ︷︷ ︸

τ0−trecent

, 0, 0, . . . , 0︸ ︷︷ ︸
t−τ0

]

7 R
(τα)
α = [rt, rt, . . . , rt︸ ︷︷ ︸

τα−trecent

, α2, α2, . . . , α2︸ ︷︷ ︸
t−τα

]

8 R
(τ1)
1 = [rt, rt, . . . , rt︸ ︷︷ ︸

τ1−trecent

, 1, 1, . . . , 1︸ ︷︷ ︸
t−τ1

]

9 minCost(0) = min
τ0∈(trecent,t)

totalCost(R
(τ0)
0 , It)

10 minCost(α2) = min
τα∈(trecent,t)

totalCost(R(τα)
α , It)

11 minCost(1) = min
τ1∈(trecent,t)

totalCost(R
(τ1)
1 , It)

12 rt+1 = arg min
i∈{0,α2,1}

minCost(i)

13 if rt+1 6= rt then
14 trecent = t
15 end
16 end
17 Function totalCost(R, It):
18 g(0) = 1, g(1) = 0;
19 cost = R(1)× c+ x1 × g(R(1));
20 for j ← 2 to t− trecent do
21 cost = cost +R(j)× c+ xj × g(R(j))
22 +M × |R(j)−R(j − 1)|;
23 end
24 return cost;
25 end

IV. MAIN RESULTS AND DISCUSSION

In this section, we state and discuss our key results.

A. Regret Analysis

Our first result characterizes the regret performance of the
policies discussed in Section III and the fundamental limit on
the performance of any online policy for adversarial arrivals.

Theorem 1 (Adversarial Arrivals): Let the arrivals be
generated by an oblivious adversary under the constraint that
at most κ request arrives in each time-slot, then,
(a) RPA(T) = Ω(

√
T) for any online policy P .

(b) RRR
A (T) = Ω(T), Rα−RR

A (T) = Ω(T).
(c) For ηt = α

√
t, α > 0,

RFTPL
A (T) ≤

√
2T logK

(
α+

4κ2

α

)
+
K2M(c+ 2κ)

2α
√
π

√
T + 1.

(d) For ηt = α
√
t, α > 0, β > 1, δ > 0,

RW-FTPL
A (T) ≤

√
βT (logM)1+δ

+
√

2T logK

(
α+

4κ2

α

)
+
K2M(c+ 2κ)

2α
√
π

√
T + 1.

The key takeaways from Theorem 1 is that RR has linear
regret and FTPL, W-FTPL have order-optimal regret, i.e.,
O(
√
T) with respect to the time horizon under adversarial

arrivals. The proof of Theorem 1 is in Section VI.
Our second result characterizes the regret performance

of the policies discussed in Section III for i.i.d. stochastic
arrivals.

Theorem 2 (Stochastic Arrivals): Let the arrivals in each
time-slot be i.i.d. stochastic with mean µ and ∆min 6= 0. Then
we have
(a) RRR

S (T) = Ω(T), Rα−RR
S (T) = Ω(T).

(b) For ηt = α
√
t− 1, α > 0,

RFTPL
S (T)

≤
(√

2 logK +
2
√

2h1 logK

∆min

)(
α+

4κ2

α

)
+

16α2 + 4κ2

∆min
+ (16α2 + 3κ2)

MK2

∆2
min

,

where h1 = 4 max{8α2, κ2}.
(c) For ηt = α

√
t− 1, α > 0, β > 1, δ > 0, and M large

enough

RW-FTPL
S (T) ≤4βκ2(logM)1+δ

∆2
min

+ (16α2 + 4κ2)

×

 1

∆2
min

+
βκ2

∆2
min∆2

max
+
∑
i 6=i?

1

∆i

 .

Remark 1: For the W-FTPL policy, if δ = 0 then for large
value of β, we have an upper bound on regret that scales

logarithmically with M . For δ > 0, for β > 1, we have an
upper bound on regret that scales as (logM)1+δ .

The key take away from Theorem 2 is that RR has linear
regret w.r.t. time and FTPL, W-FTPL has constant regret
w.r.t. time. Also, the regret of W-FTPL is proportional to
(logM)1+δ for δ ≥ 0, where as for FTPL, regret scales
linearly with M .

In Section V we validate the results stated in this section
through simulations.

V. SIMULATIONS

In this section we compare RR, FTPL and W-FTPL
policies via simulations using synthetic, stochastic arrivals.

A. Synthetic arrivals

In Fig. 1 we plot the regret of different policies as a
function of time horizon T . The parameters considered to
generate arrivals are c = 0.1, M = 50, κ = 5. The request
arrival considered is similar to the one used in proof of
Theorem 1(b) i.e., we divide time into frames and each
frame stars with d Mκ−ce slots of κ requests followed by dMc e
slots of zero requests. We consider 100 such frames for this
experiment. We observe that RR has linear regret in this case
which agrees with Theorem 1.

Fig. 1: Regret as a function of Time horizon (T)

B. Stochastic arrivals

For the stochastic case we consider arrivals in each slot to
be Bernoulli with parameter µ. We will restrict attention to
the case where there is only one partial level of hosting, i.e.,
ρPt ∈ {0, α2, 1}. We consider α2 = 0.5 and g(α2) = 0.45
. In Fig.2 and Fig.3, we consider µ = 0.4, c = 0.45 and
β = 6, ηt = 0.1

√
t for FTPL, W-FTPL policies. All the

results plotted are averaged over 50 independent experiments.
In Fig.2, we fix M = 5 and compare the regret performance
of the policies as a function of time. We observe that W-
FTPL performs better than other polices and RR has linear
regret which agrees with Theorem 2. In Fig.3, we compare the
performance of the policies with respect to M for T = 104.
We observe that W-FTPL performs better than other policies
and the main difference between the cost of policies is due
to fetch cost. Also note that W-FTPL has better dependence
on M as compared to FTPL which agrees with Theorem 2
. In Fig.4, we compare the performance of the policies by
varying rent cost c for M = 500, µ = 0.45 , and T = 104.
Again we note that W-FTPL outperforms RR and FTPL. As
c gets closer to µ the FTPL policy does multiple switches
and as a result the regret increases when c is close to µ. The
increase in switch cost is due to decrease in ∆ which follows
from Theorem 2.

 0 2000 4000 6000 8000 10000
 -50

 0

 50

 100

 150

 200

 Time

 R
eg

re
t

 RR
 FTPL
 W-FTPL

Fig. 2: Regret as a function of time

5 15 25 35 45
0

1000

2000

3000

4000

5000

RR

C
o
s
t

M

fetch cost

other cost

5 15 25 35 45
0

1000

2000

3000

4000

5000

FTPL

C
o
s
t

M

fetch cost

other cost

5 15 25 35 45
0

1000

2000

3000

4000

5000

W-FTPL

C
o
s
t

M

fetch cost

other cost

0 10 20 30 40 50
0

200

400

600

800

M

R
e
g
re

t

RR

FTPL

W-FTPL

Fig. 3: Cost, Regret as a function of fetch cost (M)

Our simulation results thus indicate that FTPL and W-
FTPL outperform RR for i.i.d. stochastic arrivals. Addition-
ally, RR can have linear regret with respect to time, while
FTPL and W-FTPL have sub-linear regret with respect to
time for all arrival processes considered.

VI. PROOF OF THEOREMS

Due to space constraints, we present the proofs of some
of our results.

A. Proof of Theorem 1(a)

We use the following lemmas to prove Theorem 1(a).
Lemma 1: If X is a random variable and E[f1(X)] =

E[f2(X)] = m, then

m− E[min{f1(X), f2(X)}] =
1

2
E[|f1(X)− f2(X)|].

Lemma 2: If X ∼ Bin(T, p) then 1
2E[|X − Tp|] = Ω(T).

Proof of Theorem 1(a): Recall that regret of any policy
is given by

RPA(T, r) =

T∑
t=1

cρt + g(ρt)rt +M(ρt − ρt−1)+

−min
i
{cαiT + g(αi)RT +Mαi} .

0.1 0.2 0.3 0.4 0.5
0

1000

2000

3000

4000

5000

6000

RR

C
o
s
t

c

fetch cost

other cost

0.1 0.2 0.3 0.4 0.5
0

1000

2000

3000

4000

5000

6000

FTPL

c

fetch cost

other cost

0.1 0.2 0.3 0.4 0.5
0

1000

2000

3000

4000

5000

6000

W-FTPL

c

fetch cost

other cost

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

R
e
g
re

t

c

RR

FTPL

W-FTPL

Fig. 4: Cost, Regret as a function of rent cost (c)

Since supr∈RRPA(T, r) ≥ Er[RPA(T, r)] where the expecta-
tion is taken over request sequences in R . We lower bound
Er[RPA(T, r)] to get the lower bound on RPA(T).

Er[RPA(T, r)] =

T∑
t=1

cρt + g(ρt)Er[rt] +M(ρt − ρt−1)+

− Er[min
i
{cαiT + g(αi)RT +Mαi}]

≥
T∑
t=1

cρt + g(ρt)Er[rt]

− Er[min
i
{cαiT + g(αi)RT }]−M.

Let ` = arg mini 6=1
αi

1−g(αi) , X ∼ Ber(cα`
κ(1−g(α`))), and rt =

κX , therefore Er[rt] = cα`
1−g(α`) . We consider c < κ and

αi + g(αi) ≤ 1 for all 1 ≤ i ≤ K therefore cα`
κ(1−g(α`)) < 1

and X is a valid Bernoulli random variable.

Er[RPA(T, r)] ≥
T∑
t=1

cρt + g(ρt)
cα`

1− g(α`)

− Er[min
i
{cαiT + g(αi)RT }]−M

=

T∑
t=1

(1− g(ρt))
cρt

(1− g(ρt))
1ρt 6=0 + g(ρt)

cα`
1− g(α`)

− Er[min
i
{cαiT + g(αi)RT }]−M

(a)

≥ cTα`
1− g(α`)

− Er[min{RT , cTα` + g(α`)RT }]−M

(b)

≥ 1

2
Er[|RT − cTα` − g(α`)RT |]−M

=
κ(1− g(α`))

2
Er
[∣∣∣∣RTκ − Tcα`

κ(1− g(α`))

∣∣∣∣]−M
(c)
=Ω(
√
T),

where (a) follows from definition of `, (b) follows from
Lemma 1, (c) follows from Lemma 2.

B. Proof of Theorem 1(b)

We use the following lemmas to prove Theorem 1(b).
Lemma 3: RR does not fetch the service for at

least d Mαi′
κ−cαi′−g(αi′)κ

e slots after eviction, where αi′ =

arg minαi 6=0
Mαi

κ−cαi−κg(αi) .
Lemma 4: Once fetched, RR hosts the service for at least

dMc e slots before it evicts the service.
Proof of Theorem 1(b): We split the entire time duration

T into frames of size tf+te and consider the arrival sequence
in each frame as rt = κ for 1 ≤ t ≤ tf and rt = 0 for
tf+1 ≤ t ≤ tf+te, where αi′ = arg minαi 6=0

Mαi
κ−cαi−κg(αi) ,

tf = d Mαi′
κ−cαi′−g(αi′)κ

e and te = dMc e.
From Lemma 3 we know that RR does not fetch any

fraction of service till time tf . By definition of α′ and arrivals
sequence, for t ≤ tf , Rt = kt. We have cαi′tf +g(αi′)Rtf +
Mαi′ < Rtf , which is the condition to fetch αi′ in t = tf+1.
By using Lemma 4 we know that RR does not evict the
service for tf +1 ≤ t ≤ tf + te. At t = tf + te+1 RR evicts
the service since condition to evict the service is satisfied i.e.,
cαi′te + g(αi′)

∑tf+te
t=tf+1 rt < Mαi′ +

∑tf+te
t=tf+1 rt.

So amongst the first tf + te timeslots, the RR policy hosts
for te slots and does not host for tf slots. If the optimal
static policy is to host αi∗ 6= 0 fraction of service then we
have regret at least (κ − cαi′ + g(αi′)κ)tf = (κ − cαi′ +

g(αi′)κ)d Mαi′
κ−cαi′−g(αi′)κ

e > 0 till time tf + te, which is a
constant and does not depend on T . If optimal is not to host
any fraction of service then we have regret of cαi′te > 0 till
tf +te, which is a constant and does not depend on T . Either
the optimal static policy is to host αi∗ 6= 0 or αi∗ = 0 there
will always be finite regret in the frame duration say d(> 0)
and d is independent of T . Since we split the entire time
duration T into frames of size tf + te = d Mαi′

κ−cαi′−g(αi′)κ
e+

dMc e and the request sequence are repeated in each frame we
get linear regret.

RRR
A (T) ≥

bT/(tf+te)c∑
f=1

d

≥ bT/(tf + te)cd

≥ d

(
T

Mαi′
κ−cαi′−g(αi′)κ

+ M
c + 2

− 1

)
= Ω(T).

C. Proof of Theorem 1(c)

The optimal policy only fetches the optimal fraction of
service to be hosted once. Therefore,

RFTPL
A (T, r)

= E[CFTPL(T, r)]−min
i
{cαiT + g(αi)RT +Mαi}

≤ E[CFTPL(T, r)]−min
i
{cαiT + g(αi)RT } (2)

Since FTPL policy does not consider fetch cost M while
making decisions we can decouple the fetch cost and the
non fetch cost incurred by the FTPL policy. Therefore we
can also decouple the expected regret incurred by the FTPL
into expected regret without fetch cost (M = 0) and fetch
cost incurred by FTPL to bound (2).

We first bound expected regret of the FTPL policy with
fetch cost M = 0 and add the expected fetch cost to get the
final regret bound.

Lemma 5: The regret for FTPL policy with non decreasing
learning rate {ηt}Tt=1 and M = 0 is given by

RFTPL
A (T) ≤

√
2 logK

(
ηT + κ2

T∑
t=1

1

ηt

)
.

Now we bound the expected fetch cost incurred by FTPL
policy.

Lemma 6: The expected fetch cost under FTPL policy upto
time T denoted by E[CFTPL

F (T)] with learning rate ηt = α
√
t

is bounded as follows

E[CFTPL
F (T)] ≤ MK2(c+ 2κ)

2α
√
π

√
T + 1.

Proof of Theorem 1(c): By using Lemma 5 and 6 we
get,

RFTPL
A (T) ≤

√
2 logK

(
α
√
T + 2κ2

T∑
t=1

1

α
√
t

)

+
K2M(c+ 2κ)

2α
√
π

√
T + 1,

and the result follows.

D. Proof of Theorem 1(d)

Proof of Theorem 1(d): Recall that Ts = min{t : t <
(maxi6=j(Θt+1,i−Θt+1,j))

2

κ2β(logM)1+δ }. For arrival sequences with requests
arriving in time-slots 1 to T , we have two possible cases,
namely, TS ≥ T and Ts < T . We consider each case to
bound the regret of W-FTPL policy.
Case I (Ts ≥ T): Let r(1) be a request sequence chosen by
adversary such that Ts ≥ T , then

|max
i 6=j

ΘT+1,j −ΘT+1,i| < κ
√
βT (logM)1+δ

=⇒ RW-FTPL
A (T) < κ

√
βT (logM)1+δ

Case II (Ts < T): Let r(2) be a request sequence chosen by
adversary such that Ts < T , then by using case I we can
bound

|max
i 6=j

ΘTs+1,i −ΘTs+1,j | < κ
√
βTs(logM)1+δ

=⇒ RW-FTPL
A (Ts) < κ

√
βT (logM)1+δ.

Thus combining both cases we get upper bound on regret in
wait phase as

RW-FTPL
A (Ts) < κ

√
βT (logM)1+δ. (3)

Note that W-FTPL policy follows FTPL policy after its
waiting time i.e., from time Ts + 1. Therefore W-FTPL and
FTPL take same decisions and have cost from time Ts + 1
to T . Thus the regret in a slot is also same for W-FTPL and
FTPL from time Ts+1 to T . If Ts ≥ T then only wait phase

will be there and regret in FTPL phase is considered to be
zero. We denote regret from time t1 to t2 as RPA(t1 : t2).

RW-FTPL
A (T) = RW-FTPL

A (Ts) +RW-FTPL
A (Ts : T)

= RW-FTPL
A (Ts) +RFTPL

A (Ts : T)

≤ RW-FTPL
A (Ts) +RFTPL

A (1 : T) (4)

By (3), (4) and Theorem 1(c) we get

RW-FTPL
A (T) ≤κ

√
βT (logM)1+δ +

K2M(c+ 2κ)

2α
√
π

√
T + 1

+
√

2T logK

(
α+

4κ2

α2

)
.

E. Proof of Theorem 2(a)

Proof of Theorem 2(a): From Lemma 4 we know
that RR hosts the service if fetched for at least dMc e slots
and from Lemma 3 we know once evicted RR takes at
least d Mαi′

κ−cαi′−g(αi′)κ
e slots to fetch αi′ fraction of service.

We divide the entire time T into frames of size fs =
dMc e+d

Mαi′
κ−cαi′−g(αi′)κ

e slots. Let us define an event F as the
frame that starts with d Mαi′

κ−cαi′−g(αi′)κ
e slots with κ arrivals

in each slot and followed by dMc e slots of zeros arrivals.
Let the probability of event F occurring be p. Since requests
are i.i.d probability of getting κ requests or zero requests
in a slot are independent of time horizon T which implies
probability of observing frame F is also independent of T .
Conditioned on event F , if optimal static policy is to host
αi∗ 6= 0 fraction of service then we have regret at least
(κ−cα+g(α)κ)d Mαi′

κ−cαi′−g(αi′)κ
e > 0 in a frame. If optimal

is not to host any fraction of service then we have regret of
cαi′dMc e > 0 in a frame. Therefore conditioned on event F
RR always have a finite nonzero regret say d(> 0) which is
independent of T . Therefore,

RRR
S (T) = Er

bT/fsc∑
f=1

d1(event F occured)


≥
(
T

fs
− 1

)
pd

≥

(
T

M
κ−cαi′−g(αi′)κ

+ M
c + 2

− 1

)
pd

= Ω(T).

So even in the stochastic case RR observes linear regret.

F. Proof of Theorem 2(b)

We use the following lemmas to prove Theorem 2(b).
Lemma 7: For M = 0 we bound the Regret of FTPL policy

as follows

RFTPL
S (T) ≤

∑
i 6=i?

16α2 + 3κ2

∆i
.

We improve the bound on regret of FTPL in Lemma 7 to get
better dependence on number of storage levels we can have.

Lemma 8: For M = 0 we bound the Regret of FTPL policy
as follows

RFTPL
S (T) ≤

(√
2 logK +

2
√

2h1 logK

∆min

)(
α+

4κ2

α

)
+

16α2 + 4κ2

∆min
,

where h1 = 2 max{16α2, 2κ2}
Lemma 9: Fetch cost under FTPL policy with learning rate

ηt = α
√
t− 1 is bounded as follows

E[CFTPL
f (T)] ≤MK2 16α2 + 2κ2

∆2
min

.

Proof of Theorem 2(b): Note that FTPL policy does not
consider fetch cost M while taking the decisions. By using
Lemma 8, 9 we get the result stated.

G. Proof of Theorem 2(c)

We use the following lemmas to prove Theorem 2(c).
Lemma 10: Under FTPL policy with learning rate

ηt=α
√
t− 1, αi < αj we have

P(ρt = αi, ρt+1 = αj) ≤ exp

(
− (t− 1)∆2

min

16α2

)
+ exp

(
−∆2

min(t− 1)

2κ2

)
.

Lemma 11: Under the W-FTPL policy,
Ts > (

√
β−1)2(logM)1+δ

∆2
max

with probability at least

1− (
√
β−1)2(logM)1+δ

M2(logM)δ∆2
max

.
Lemma 12: Under the W-FTPL policy

E[Ts] ≤ 1 +
4βκ2(logM)1+δ

∆2
min

+
1

M2β

2κ2

∆2
min
.

Proof of Theorem 2(c): Under W-FTPL,

Er[CW-FTPL(T)] =Er[Ts] + Er

[
T∑

t=Ts+1

(cρt + g(ρt)rt)

]

+MEr

[
T∑

t=Ts+1

P(ρt > ρt−1)

]
.

By the using definition of regret we get,

RW-FTPL
S (T) ≤E[Ts] +

T∑
t=1

(cρt + µg(ρt))− µi?

+MEr

[
T∑

t=Ts+1

P(ρt > ρt−1)

]
.

By using the results of Lemma 7, 9 we get

RW-FTPL
S (T) ≤E[Ts] +

∑
i6=i?

16α2 + 3κ2

∆i

+MEr

[
T∑

t=Ts+1

P(ρt > ρt−1)

]
.

Let Er[Cf] = MEr
[∑T

t=Ts+1 P(ρt > ρt−1)
]
, then

Er[Cf] =Er[Cf |Ts ≤ T0]P(Ts ≤ T0)

+ Er[Cf |Ts > T0]P(Ts > T0)

≤E[Cf |Ts = 1]P(Ts ≤ T0) + E[Cf |Ts = dT0e]
(a)

≤P(Ts ≤ T0)E[CFTPL
F]

+MK2
T∑

t=dT0e

(
exp

(
−∆2

mint

16α2

)
+ e−∆2

mint/2κ
2

)

≤MK2P(Ts ≤ T0)
16α2 + 3κ2

∆2
min

+MK2 16α2

∆2
min

exp

(
−∆2

minT0

16α2

)
+MK2 2κ2

∆2
min

exp

(
−∆2

minT0

2κ2

)
.

Here, (a) is obtained by using Lemma 10. By considering
T0 = (

√
β−1)2κ2(logM)1+δ

∆2
max

and using Lemma 11, 12 we get,

RW-FTPL
S (T)

≤1 +
4βκ2(logM)1+δ

∆2
min

+
1

M2β(logM)δ

2κ2

∆2
min

+ (16α2 + 3κ2)
∑
i6=i?

1

∆i

+MK2 (
√
β − 1)2κ2(logM)1+δ

∆2
maxM

2(logM)δ

16α2 + 3κ2

∆2
min

+

 16α2MK2

M
(
√
β−1)2κ2∆2

min(logM)δ

16α2∆2
max

+
2MK2κ2

M
(
√
β−1)2∆2

min(logM)δ

2∆2
max

 1

∆2
min
.

For large values of M we get the result stated.

VII. CONCLUSIONS

We study the problem of (partial) service hosting at the
edge for both adversarial and stochastic arrivals with regret
as the performance metric of interest. We show that the RR
policy and its variant for partial hosting are strictly sub-
optimal for both adversarial and stochastic arrivals with linear
regret with respect to time. We further show that the widely
studied FTPL policy has order-optimal regret with respect
to time for both adversarial and stochastic arrivals. One
shortcoming of the FTPL policy is that its performance can
deteriorate in the case where the cost of fetching the service
to host at the edge is high. To address this limitation, we
propose a variant of FTPL called Wait-then-FTPL and show
that in addition to having order-optimal regret with respect
to time for both adversarial and stochastic arrivals, W-FTPL
outperforms FTPL when the cost of fetching is high.

REFERENCES

[1] R. S. Prakash, N. Karamchandani, V. Kavitha, and S. Moharir, “Partial
service caching at the edge,” in 2020 18th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOPT). IEEE, 2020, pp. 1–8.

[2] V. S. C. L. Narayana, M. Agarwala, R. S. Prakash, N. Karamchandani,
and S. Moharir, “Online partial service hosting at the edge,” CoRR,
vol. abs/2103.00555, 2021. [Online]. Available: https://arxiv.org/abs/
2103.00555

[3] V. C. L. Narayana, S. Moharir, and N. Karamchandani, “On renting
edge resources for service hosting,” ACM Transactions on Modeling
and Performance Evaluation of Computing Systems, vol. 6, no. 2, pp.
1–30, 2021.

[4] T. Zhao, I.-H. Hou, S. Wang, and K. Chan, “Red/led: An asymptotically
optimal and scalable online algorithm for service caching at the edge,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 8, pp.
1857–1870, 2018.

[5] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[6] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis, “Learning to
cache with no regrets,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 235–243.

[7] R. Bhattacharjee, S. Banerjee, and A. Sinha, “Fundamental limits on
the regret of online network-caching,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 4, no. 2, pp.
1–31, 2020.

[8] T. S. Salem, G. Neglia, and S. Ioannidis, “No-regret caching via
online mirror descent,” in ICC 2021-IEEE International Conference on
Communications. IEEE, 2021, pp. 1–6.

[9] S. Mukhopadhyay and A. Sinha, “Online caching with optimal switching
regret,” in 2021 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2021, pp. 1546–1551.

https://arxiv.org/abs/2103.00555
https://arxiv.org/abs/2103.00555

	Introduction
	Our Contributions

	System Setup
	Policies
	Main Results and Discussion
	Regret Analysis

	Simulations
	Synthetic arrivals
	Stochastic arrivals

	Proof of theorems
	Proof of Theorem ??(a)
	Proof of Theorem ??(b)
	Proof of Theorem ??(c)
	Proof of Theorem ??(d)
	Proof of Theorem ??(a)
	Proof of Theorem ??(b)
	Proof of Theorem ??(c)

	Conclusions
	References

