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Abstract

We consider the problem of service hosting where a service provider can
dynamically rent edge resources via short term contracts to ensure better
quality of service to its customers. The service can also be partially hosted
at the edge, in which case, customers’ requests can be partially served at the
edge. The total cost incurred by the system is modeled as a combination of
the rent cost, the service cost incurred due to latency in serving customers,
and the fetch cost incurred as a result of the bandwidth used to fetch the
code/databases of the service from the cloud servers to host the service at
the edge. In this paper, we compare multiple hosting policies with regret as
a metric, defined as the difference in the cost incurred by the policy and the
optimal policy over some time horizon T . In particular we consider the Retro
Renting (RR) and Follow The Perturbed Leader (FTPL) policies proposed
in the literature and provide performance guarantees on the regret of these
policies. We show that under i.i.d stochastic arrivals, RR policy has linear
regret while FTPL policy has constant regret. Next, we propose a variant of
FTPL, namely Wait then FTPL (W-FTPL), which also has constant regret
while demonstrating much better dependence on the fetch cost. We also
show that under adversarial arrivals, RR policy has linear regret while both
FTPL and W-FTPL have regret O(

√
T ) which is order-optimal.

1. Introduction

Software as a Service (SaaS) instances like online navigation platforms,
Video-on-Demand services, etc., have stringent latency constraints in order
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to provide a good quality of experience to their customers. While most SaaSs
use cloud resources, low latency necessitates the use of storage/computational
resources at the edge, i.e., close to the end-user. A service is said to be
hosted at the edge if the code and databases needed to serve user queries
are stored on the edge servers and requests can be served at the edge. In
this work, the service can also be partially hosted at the edge, in which case,
customers’ requests can be partially served at the edge [1, 2]. For instance,
consider a SaaS application which provides access to news articles on demand.
A typical news article includes some text, some images and possibly some
embedded videos. One way to partially host such a service is to store the text
corresponding to the news articles at the edge and store the images/videos
in the cloud. Each user request will then be served partially by the edge.

We consider the setting where third-party resources can be rented via
short-term contracts to host the service, and the edge hosting status of the
SaaS can be dynamically changed over time. If the service is not hosted at
the edge, it can be fetched from the cloud servers by incurring a fetch cost.
The performance of a hosting policy is a function of the rent cost, the fetch
cost, and the quality of experience of the users. We refer to the algorithmic
challenge of determining what fraction of the service to host at the edge over
time as the service hosting problem. Note that we study the service hosting
problem from the perspective of a specific SaaS provider which can rent
third-party edge resources to improve their customers’ quality of experience
by reducing the latency of their service.

Novel online service hosting policies with provable performance guaran-
tees have been proposed in [3, 4]. The metric of interest in [3, 4] is the
competitive ratio, defined as the ratio of the cost incurred by an online policy
to the cost incurred by an optimal offline policy for the same request arrival
sequence. Since the competitive ratio is multiplicative by definition, the ab-
solute value of the difference in the cost incurred by an online policy and the
optimal policy can be large even though the competitive ratio of the online
policy is close to one. This motivates studying the performance of candidate
policies in terms of regret, defined as the difference in the cost incurred by
the policy and the optimal policy. Regret is a widely used metric in online
learning [5], including recently for the caching problem [6, 7], which is closely
related to the service hosting problem. In this work, one of our goals is to
design hosting policies with provable guarantees in terms of the regret. An-
other key dimension in the performance guarantees of online policies is the
assumption made on the request arrival process. Commonly studied settings
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include the stochastic setting and the adversarial setting, and we provide
performance guarantees for both settings.

1.1. Our Contributions

We propose a variant of the FTPL policy called Wait then Follow the
Perturbed Leader (W-FTPL). W-FTPL is a randomized policy that takes
into account the fetch cost in its decision-making. More specifically, W-
FTPL does not fetch the service for an initial wait period which depends on
the request arrivals and is an increasing function of the fetch cost. Following
the wait period, W-FTPL mimics the FTPL policy.

For i.i.d. stochastic request arrivals and the regret metric, we show that
RR is sub-optimal while FTPL and W-FTPL are both order-optimal with
respect to the time horizon. While the regret of FTPL can increase linearly
with the fetch cost, the regret of W-FTPL increases at most polylogarithmi-
cally. The improved performance of W-FTPL over FTPL is a consequence
of the fact that W-FTPL avoids most of the fetches made by FTPL in the
initial time-slots and by the end of the wait period, its estimate of the arrival
rate is accurate enough to avoid multiple fetches. Further, we characterize
the competitive ratio of FTPL and W-FTPL for the setting where a finite
number of partial hosting levels are allowed. We compare these results with
the competitive ratio of RR when a single partial hosting level is allowed [2]
to conclude that FTPL and W-FTPL outperform RR with respect to the
competitive ratio.

For the adversarial setting, we first characterize a fundamental lower
bound on the regret of any online hosting policy. In terms of regret, we
then show that RR is strictly suboptimal, while FTPL and W-FTPL have
order-optimal performance with respect to time. We show that the compet-
itive ratios of FTPL and W-FTPL are upper bounded by a constant (with
respect to time) for any finite number of partial hosting levels. This is a
more general setting than the one considered in [2], where the competitive
ratio of a variant of RR is characterized when only one partial hosting level
is permitted.

1.2. Related work

Several emerging applications such as Augmented / Virtual Reality (AR/VR),
online gaming, the Internet of Things (IoT), and autonomous driving have
very stringent latency requirements. In addition, many of these applications
are also compute-and-storage heavy. This necessitates the migration of some
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of the storage and computation requirements of these services from remote
cloud servers to the edge. To enable such offloading, several edge computing
architectures have been proposed in the literature and their performance has
been analyzed extensively, see for example [8, 9, 10] and references therein.

The service hosting problem has received a lot of attention recently, and
various settings have been studied. One approach has been to pose the design
problem of where to host which service as a one-shot large-scale optimization
problem, see for example [11, 12, 13]. Our work differs from this line of work
in that we consider an online setting where we adaptively decide when (and
what fraction of) service to host at any time, depending on the varying
number of requests seen thus far.

There have been recent works [4, 14] which consider the online service
hosting problem, and design adaptive schemes whose performance is char-
acterized in terms of the competitive ratio with respect to an oracle which
known the entire request sequence apriori. Our work differs from these in
a couple of ways. Firstly, the above mentioned works study the problem
from the perspective of an edge resource provider who has to decide which
amongst a collection of services to host at each time on a storage-constrained
edge server. On the other hand, similar to some other works [15, 3], we study
the problem from the perspective of a service provider which needs to decide
when to host its application at the edge so as to minimize the overall cost.
Secondly, most of the works mentioned above do not consider partial hosting
of the service, which is allowed in our framework. While [2] does study par-
tial hosting and proposed the Retro-Renting (RR) policy which is shown to
have a constant competitive ratio, it only allows one level of partial hosting
of the service. On the other hand, we consider a much more general setting
where multiple partial service hosting levels are allowed and are able to show
that both the FTPL and its variant W-FTPL are able to achieve a constant
competitive ratio.

While the works mentioned above study competitive ratio as a perfor-
mance metric, another popular measure of performance for online algorithms
is the regret which considers the difference in the cost incurred by an online
policy and the optimal (static) policy. In particular, for the closely related
caching problem, several policies inspired by the recent advances in online
convex optimization have been proposed, including Online Gradient Ascent
[6], Online Mirror Descent [16], and Follow the Perturbed Leader (FTPL)
[17, 7]. In particular, FTPL has been shown to have order-optimal regret
for the caching problem in the adversarial setting [17, 7]. In this work, we
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study regret for the RR and FTPL policies for the service hosting problem
under both the stochastic and adversarial settings. Since RR is a determin-
istic policy, its regret performance in the adversarial setting is poor. While
FTPL does achieve order-optimal regret (with respect to time), one limita-
tion is that it makes hosting decisions agnostic of the fetch cost. As a result,
in some cases, FTPL is prone to fetching and evicting the service multiple
times in the initial time-slots when its estimate of the request arrival rate
is noisy, thus leading to poor performance. This motivated our design and
regret analysis of W-FTPL, a variant of FTPL which takes into account the
fetch cost. One recent work which also considers regret as a performance
metric is [18], which studied the problem of joint online service hosting and
routing and proposed a two time-scale algorithm based on online gradient
descent with provably order-optimal regret under adversarial requests.

Finally, there are several other approaches which have been used to ad-
dress the online service hosting problem, including Markov Decision Pro-
cesses [19, 20, 1], Reinforcement Learning [21], and Multi-Armed Bandits
[22, 23].

2. System Setup

We consider a system consisting of a back-end server and an edge-server
to serve customers of a service. The back-end server always hosts the service
and can serve any requests that are routed to it. In this work, we allow the
service to be partially hosted at the edge-server. When the service is partially
hosted at the edge, requests are partially served at the edge and partially at
the back-end server. Further, the fraction of service hosted at the edge can
be changed over time. If the service is not hosted or partially hosted at the
edge, parts of the service can be fetched from the back-end server to host at
the edge.

Sequence of events in each time-slot : We consider a time-slotted system.
In each time-slot, we first make the service hosting decision for that time-
slot. Following this, requests may arrive and are served at the edge and/or
the back-end server.

Request arrivals : We consider two types of arrival processes in this paper.

- Stochastic arrivals : In this case, request arrivals are i.i.d. across time-
slots with mean µ.
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- Adversarial arrivals : In this case, the request arrival sequence is gen-
erated by an oblivious adversary1.

Let rt denote the number of request arrivals in time-slot t. We consider
bounded requests, specifically, 0 ≤ rt ≤ κ, and let Rt =

∑t
i=1 ri denote the

cumulative requests observed by the end of time-slot t. In both cases, we
assume that there are at most κ arrivals per slot.

Costs : We model three types of costs.

- Rent cost (CPR,t): The system incurs a cost of c units per time-slot to
host the entire service at the edge. For hosting f fraction of service,
the system incurs a cost of cf units per time-slot.

- Service cost (CPS,t): This is the cost incurred to use the back-end server
to serve (parts of) requests. If f fraction of service is hosted at the
edge, the system incurs a service cost of g(f) units per request, where
g(f) is a decreasing function of f . We fix g(0) = 1, i.e., service cost is
one unit when the service is not hosted at the edge.

- Fetch cost (CPF,t): The system incurs a cost of M > 1 units for each
fetch of the entire service from the back-end server to host on the edge-
server. For fetching f fraction of service, the system incurs a cost of
Mf units.

Let ρPt denote the edge hosting status of the service in time slot t under
policy P . We consider the setting where ρPt ∈ {α1, α2, · · · , αK−1, αK} and
ρPt = αi implies that αi fraction of the service is hosted at the edge-server
in time-slot t. Note that αi ∈ [0, 1] and in particular we consider α1 = 0,
αK = 1 and αi < αj for i < j. It follows that ρPt = 1 implies that the
entire service is hosted at the edge in time-slot t, and ρPt = 0 implies that
the service is not hosted at the edge in time-slot t.

We make some assumptions about the various system parameters.

Assumption 1. c ≤ κ.

This assumption is motivated by the fact that if κ < c, it is strictly sub-
optimal to host the entire service at the edge, irrespective of the number of
arrivals in a time-slot.

1The entire request sequence is assumed to be fixed apriori.
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Assumption 2. For a fraction of service αi, 1 ≤ i ≤ K, αi + g(αi) ≤ 1.

In [1, 2], it is shown that the benefits of partial hosting are limited to the
setting where αi + g(αi) ≤ 1. Motivated by this, we consider the case where
αi + g(αi) ≤ 1 for all candidate values of αi.

Assumption 3. For any fraction of service αi, 1 ≤ i ≤ K, cαi+g(αi)rt ≤ κ

Assumption 3 follows from Assumptions 1 and 2

Assumption 4. For stochastic arrivals, µ > 0 and for adversarial arrivals,
RT ≥ 1.

This assumption eliminates degenerate cases where there are no request
arrivals in the time-horizon of interest.

The total cost incurred in time-slot t by policy P , denoted by CPt (rt), is
the sum of the rent, service, and fetch costs. It follows that,

CPt (rt) = cρPt + g(ρPt )rt +M(ρPt − ρPt−1)+. (1)

Let r = {rt}t≥1 denote the request arrival sequence and CP(T, r) denote the
cumulative cost incurred by policy P in time-slots 1 to T . It follows that,

CP(T, r) =
T∑
t=1

CPt (rt).

Performance metrics : We consider two performance metrics, namely re-
gret and competitive ratio.

For i.i.d. stochastic arrivals, the regret of a policy P , denoted by RPS (T ),
is defined as the difference in the total expected cost incurred by the policy
and the oracle static hosting policy. The oracle static hosting policy makes a
hosting decision at t = 1 using the knowledge of the statistics of the request
arrival process but not the entire sample-path. For ease of notation, we define
µ = E[rt], µi = cαi+g(αi)µ. It follows that the expected cost incurred by the
optimal static hosting policy in time-slots 1 to T is mini{cαiT + g(αi)µT +
Mαi}, and therefore,

RPS (T ) = EP,r[CP(T, r)]−min
i
{cαiT + g(αi)µT +Mαi}

= EP,r[CP(T, r)]−min
i
{µiT +Mαi},
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≤ EP,r[CP(T, r)]−min
i
{µiT}, (2)

where EP,r represents the expectation over the randomization in policy
P and the request arrival sequences r.

For i.i.d. stochastic arrivals, the competitive ratio of a policy P , denoted
by σPS (T ), is defined as the ratio of the expected total cost incurred by the
policy and expected total cost incurred by the optimal static hosting policy
as discussed above. It follows that,

σPS (T ) =
EP,r[CP(T, r)]

mini{cαiT + g(αi)µT +Mαi}
.

For adversarial arrivals, the regret of a policy P , denoted by RPA(T ), is
defined as the worst case difference in the total expected cost incurred by
the policy and the optimal static hosting policy. The expectation is taken
over the randomization in policy P . It follows that for any request sequence
r, the total cost incurred by the optimal static hosting policy in time-slots 1
to T is mini{cαiT + g(αi)RT +Mαi}, and therefore,

RPA(T, r) = EP [CP(T, r)]−min
i
{cαiT + g(αi)RT +Mαi},

RPA(T ) = sup
r

(
RPA(T, r)

)
.

We have the following relation between the regret induced by a policy
under i.i.d stochastic arrivals and adversarial arrivals.

Lemma 1. For any online policy P and stochastic arrivals we have, RPS (T ) ≤
RPA(T ).

The proof can be found in Section 7.
For adversarial arrivals, the competitive ratio of a policy P , denoted by

σPA(T ), is defined as the worst case ratio of the expected total cost incurred
by the policy and the cost incurred by the offline optimal policy. The optimal
offline policy can change the hosting status over time using the knowledge
of the entire request process a priori. Let the cost incurred by the optimal
offline hosting policy in time-slots 1 to T be denoted by COFF-OPT(T, r). It
follows that,

σPA(T ) = sup
r

EP [CP(T, r)]

COFF-OPT(T, r)
.
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Goal : The goal is to design online hosting policies with provable perfor-
mance guarantees with respect to regret and competitive ratio.

Notations : We define some notations which will be used in the rest of this
paper. Let s = [0, α2, α3, · · · , 1]′, f = [1, g(α2), g(α3), · · · , 0]′, and ρPt ∈ X ,
where X is the collection of all possible one hot vectors in {0, 1}K and thus
|X | = K. The position of 1 in the one hot vector ρPt represents the level of
service hosted at the edge in slot t, that is ρPt = 〈ρPt , s〉. The total cost in
slot t as given in (1) can be rewritten using the above notations as follows,

CPt (rt) = c〈ρPt , s〉+ rt〈ρPt ,f〉+M(ρPt − ρPt−1)+,

= 〈ρPt ,θt〉+M(ρPt − ρPt−1)+,

where θt = cs+ rtf .
For ease of notation, for stochastic arrivals we define µ = E[rt], µi =

cαi + g(αi)µ, ∆ij = µi−µj, i? = arg mini µi , ∆i = µi−µi? , ∆min = mini ∆i,
∆max = maxi ∆i.

We summarize important notations used in this paper in Table 1.

3. Policies

Our Policy : Our policy called Wait then Follow the Perturbed Leader
(W-FTPL), is a variant of the popular FTPL policy. A formal definition of
FTPL is given in Algorithm 1. FTPL is a randomized policy and is known to
perform well for the traditional caching problem, in fact achieving order-wise
optimal regret for adversarial arrivals [7]. Under FTPL, in any time slot t, for
each i, FTPL considers the cumulative cost that would have been incurred
had the system used αi hosting fraction in the entire duration [1, t − 1],
and then perturbs this by an appropriately scaled version of a sample of a
standard Gaussian random variable. FTPL then hosts the fraction of service
for which the perturbed cost is minimum in that slot.

We propose a policy called Wait then Follow The Perturbed Leader (W-
FTPL). The key idea behind the W-FTPL policy is to not host the service
for an initial wait period. This is to reduce the number of fetches made
initially when the estimate of the arrivals is noisy. The duration of this wait
period is not fixed apriori and is a function of the arrival pattern seen till
that time. Following the wait period, W-FTPL mimics the FTPL policy.
Refer to Algorithm 2 for a formal definition of W-FTPL. Let Ts be the
time slot, after which W-FTPL starts acting as FTPL. Formally we define

Ts = min{t : t <
(maxi 6=j(Θt+1,i−Θt+1,j))

2

κ2β(logM)1+δ }, where β > 1, δ > 0 are constants.
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Symbol Description

c Rent cost for hosting complete service in a slot
M Fetch cost
K Number of hosting levels allowed
t Time index
ρPt Fraction of service hosted in time slot t under policy P
κ Maximum number of arrivals in a slot
αi Fraction of service
g(f) Fraction of request forwarded if f fraction is hosted
rt Number of requests in time slot t
Rt Cumulative number of requests up to time slot t
µ E[rt]
T Time horizon

CP(T, r) Cost incurred till T under policy P for request sequence r
RPS (T ) Regret under stochastic arrival setting
σPS (T ) Competitive ratio under stochastic arrival setting
RPA(T ) Regret under adversarial arrival setting
σPA(T ) Competitive ratio under adversarial arrival setting
µi cαi + g(αi)µ

∆ij µi − µj
i? arg mini µi
∆i µi − µi?

∆min mini ∆i

∆max maxi ∆i

s [0, α2, α3, · · · , 1]′

f [1, g(α2), g(α3), · · · , 0]′

θt cs+ rtf

Θt

∑t−1
i=1 θi

ηt Learning rate
α Hyper parameter in FTPL, W-FTPL policies
β, δ Hyperparameters in W-FTPL policy
γ IID Gaussian vector
X Collection of one hot vectors in {0, 1}K
Ts Waiting time for W-FTPL policy

Table 1: Notations
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Algorithm 1: Follow The Perturbed Leader (FTPL)

Input: c, {ηt}t≥1, {rt}t≥1

1 Set Θ1 ← 0
2 Sample γ ∼ N (0, I)
3 for t = 1 to T do
4 host ρt ∈ arg minρ∈X 〈ρ,Θt + ηtγ〉
5 θt = cs+ rtf
6 Update Θt+1 = Θt + θt

Algorithm 2: Wait then Follow The Perturbed Leader (W-FTPL)

Input: c, M , {ηt}t≥1, {rt}t≥1, β, δ, κ
1 Set Θ1 ← 0, wait=1
2 Sample γ ∼ N (0, I)
3 for t = 1 to T do
4 if wait = 1 then
5 ρt = 0
6 else
7 host ρt ∈ arg minρ∈X 〈ρ,Θt + ηtγ〉
8 θt = cs+ rtf
9 Update Θt+1 = Θt + θt

10 wait = min{wait,1
t≥

(maxi6=j(Θt+1,i−Θt+1,j))2

κ2β(logM)1+δ

}
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Retro-Renting (RR) [3]: The RR policy is a deterministic hosting policy,
and it either hosts the complete service or hosts nothing in a slot. The
key idea behind this policy is to use recent arrival patterns to make hosting
decisions. We refer the reader to Algorithm 1 in [3] for a formal definition of
the RR policy. The performance of RR with respect to the competitive ratio
was analyzed in [3].

α−RR [2] is a variant of RR where one partial level of hosting the service
is allowed. The formal definition of α−RR, borrowed from [2, Algorithm 1]
is given in Algorithm 3. Similar to RR, the key idea behind α−RR policy is
to check whether the current hosting status is optimal in the hindsight using
recent arrival patterns to make hosting decisions. α−RR checks the optimal
offline policy cost for the recent request arrivals and chooses the fraction of
service with the minimum cost. For ρPt ∈ {0, 1}, α−RR behaves as RR [2].
Therefore we refer α−RR as RR in this paper.

4. Main Results and Discussion

In this section, we state and discuss our key results.

4.1. Regret Analysis

Our first result characterizes the regret performance of the policies dis-
cussed in Section 3 and the fundamental limit on the performance of any
online policy for adversarial arrivals.

Theorem 1 (Adversarial Arrivals). Let the arrivals be generated by an obliv-
ious adversary under the constraint that at most κ requests arrive in each
time-slot. Then,

(a) RPA(T ) = Ω(
√
T ) for any online policy P.

(b) RRR
A (T ) = Ω(T ).

(c) For ηt = α
√
t, α > 0,

RFTPL
A (T ) ≤

√
2T logK

(
α +

4κ2

α

)
+
K2M(c+ 2κ)

2α
√
π

√
T + 1.

(d) For ηt = α
√
t, α > 0,

RFTPL
A (T ) ≥Mα2/K.
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Algorithm 3: α-RetroRenting (α-RR)

1 Input: Fetch cost M , partial hosting level α2, latency cost under
partial hosting g(α2), rent cost c, request arrival sequence {xl}tl≥0

2 Output: service hosting strategy rt+1, t > 0
3 Initialize: r1 = trecent = 0
4 for each time-slot t do
5 It = (M , g(α2), t, trecent, c, {xl}tl≥trecent

)

6 R
(τ0)
0 = [rt, rt, . . . , rt︸ ︷︷ ︸

τ0−trecent

, 0, 0, . . . , 0︸ ︷︷ ︸
t−τ0

]

7 R
(τα)
α = [rt, rt, . . . , rt︸ ︷︷ ︸

τα−trecent

, α2, α2, . . . , α2︸ ︷︷ ︸
t−τα

]

8 R
(τ1)
1 = [rt, rt, . . . , rt︸ ︷︷ ︸

τ1−trecent

, 1, 1, . . . , 1︸ ︷︷ ︸
t−τ1

]

9 minCost(0) = min
τ0∈(trecent,t)

totalCost(R
(τ0)
0 , It)

10 minCost(α2) = min
τα∈(trecent,t)

totalCost(R(τα)
α , It)

11 minCost(1) = min
τ1∈(trecent,t)

totalCost(R
(τ1)
1 , It)

12 rt+1 = arg min
i∈{0,α2,1}

minCost(i)

13 if rt+1 6= rt then
14 trecent = t
15 end

16 end
17 Function totalCost(R, It):
18 g(0) = 1, g(1) = 0;
19 cost = R(1)× c+ x1 × g(R(1));
20 for j ← 2 to t− trecent do
21 cost = cost +R(j)× c+ xj × g(R(j))
22 +M × |R(j)−R(j − 1)|;
23 end
24 return cost;

25 end
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(e) For ηt = α
√
t, α > 0, β > 1, δ > 0,

RW-FTPL
A (T ) ≤

√
βT (logM)1+δ +

√
2T logK

(
α +

4κ2

α

)
+
K2M(c+ 2κ)

2α
√
π

√
T + 1.

The key take-away from Theorem 1 is that RR has linear regret and
FTPL, W-FTPL have order-optimal regret, i.e., O(

√
T ) with respect to the

time horizon under adversarial arrivals. The proof of Theorem 1 is in Section
6.

Our second result characterizes the regret performance of the policies
discussed in Section 3 for i.i.d. stochastic arrivals.

Theorem 2 (Stochastic Arrivals). Let the arrivals in each time-slot be i.i.d.
stochastic with mean µ and ∆min 6= 0. Then we have

(a) RRR
S (T ) = Ω(T ).

(b) For ηt = α
√
t− 1, α > 0,

RFTPL
S (T ) ≤

(√
2 logK +

2
√

2h1 logK

∆min

)(
α +

4κ2

α

)
+

16α2 + 4κ2

∆min

+ (16α2 + 3κ2)
M

∆2
min

,

where h1 = 4 max{8α2, κ2}.

(c) For ηt = α
√
t− 1, α > 0, β > 1, δ > 0, and M large enough we have,

RW-FTPL
S (T ) ≤ 1 + βκ2(logM)1+δ

(
4

∆2
min

+
16α2 + 3κ2

∆2
min∆2

max

)
+ (16α2 + 4κ2)

(
1

∆min

+
1

∆2
min

)
+

(√
2 logK +

2
√

2h1 logK

∆min

)(
α +

4κ2

α

)
,

where h1 = 4 max{8α2, κ2}.
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Corollary 1 (Stochastic Arrivals). Let the arrivals in each time-slot be i.i.d.
stochastic with mean µ and ∆min 6= 0. For the W-FTPL policy, if ρPt ∈
{0, 1}, β = max{(1 + 4α/κ)2, (1 +

√
2/κ)2}, then the regret scales at most

logarithmically with M .

Remark 1. While the result in 2 (c) is stated for δ > 0, it can e shown
that for δ = 0 and β chosen suitably large, the regret of W-FTPL scales
logarithmically with M .

The key take-aways from Theorem 2 are that RR has linear regret with
respect to time, and FTPL/W-FTPL has regret that does not scale with
time. Also, the upper bound on the regret of W-FTPL scales as (logM)1+δ

for δ ≥ 0 where as for FTPL, the upper bound on the regret scales linearly
with M . W-FTPL thus outperforms FTPL w.r.t. to the dependence of regret
on the fetch cost M . We validate these results via simulations in Section 5.

4.2. Competitive Ratio Analysis

Our next result characterizes the competitive ratio of the policies dis-
cussed in Section 3. The competitive ratio of RR is characterized in [3, 2],
and it is shown that RR has a constant competitive ratio and the competitive
ratio decreases with an increase in fetch cost M . We present the results for
FTPL and W-FTPL policies below.

Theorem 3 (Adversarial Arrivals). Let the arrivals be generated by an obliv-
ious adversary under the constraint that at most κ requests arrive in each
time-slot. Then we have

(a) For ηt = α
√
t− 1, α > 0,

σFTPL
A (T ) ≤ κ2(3 + 2M/c)

mini(cαi + g(αi)κ)
max
αi 6=0

1− g(αi)

αi

+
κ2(M + c)

mini(cαi + g(αi)κ)

K∑
i=2

16α2

c2α2
i

.

(b) For ηt = α
√
t− 1, α > 0, β > 1, δ ≥ 0,

σW-FTPL
A (T ) ≤ κ2(3 + 2M/c)

mini(cαi + g(αi)κ)
max
αi 6=0

1− g(αi)

αi
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+
κ2(M + c)

mini(cαi + g(αi)κ)

K∑
i=2

16α2

c2α2
i

+
κ2

mini(cαi + g(αi)κ)
.

The key take-away from Theorem 3 is that the competitive ratios of both
FTPL and W-FTPL are bounded by a constant. The competitive ratio of
FTPL and W-FTPL deteriorates with M , while the competitive ratio of RR
improves with M when only one partial hosting level is permitted [2]. Note
that the competitive ratio of FTPL and W-FTPL is bounded by a constant
for the setting where any finite number of partial hosting levels are allowed.
Compared to this, for RR in [2], the competitive ratio result holds only for
one partial hosting level.

Theorem 4 (Stochastic Arrivals). Let the arrivals in each time-slot be i.i.d.
stochastic with mean µ. Then we have

(a) For T large enough, σRRS (T ) > 1.

(b) For ηt = α
√
t− 1, σFTPL

S (T ) ≤ 1 + O(1/T ).

(c) For ηt = α
√
t− 1, α > 0, β > 1, δ > 0, σW-FTPL

S (T ) ≤ 1 + O(1/T ).

The key take-away from Theorem 4 is that for T large enough, FTPL and
W-FTPL outperform RR in terms of competitive ratio for stochastic arrivals.

In Section 5 we supplement the results stated in this section through
simulations.

5. Simulations

In this section, we compare RR, FTPL and W-FTPL policies via simula-
tions using synthetic request sequences, as well as real trace data from [24].
In all our simulations, we consider ηt = 0.1

√
t for FTPL and W-FTPL, and

β = 6 for W-FTPL.

5.1. Synthetic arrivals

In Figure 1, we plot the regret of different policies as a function of time
horizon T . The parameters considered are c = 0.1, M = 50, κ = 5. The
request arrival considered is similar to the one used in the proof of Theorem

16



3(b), i.e., we divide time into frames, and each frame starts with d M
κ−ce slots

of κ requests each followed by dM
c
e slots of zero requests. We consider 100

such frames for this experiment. The regret is averaged over 50 experiments.
We observe that RR has linear regret in this case which agrees with Theorem
1.
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Figure 1: Regret as a function of Time horizon (T )

5.2. Stochastic arrivals

For the stochastic case, we consider arrivals in each slot to be Bernoulli
with parameter µ. We will restrict attention to the case where there is only
one partial level of hosting, i.e., ρPt ∈ {0, α2, 1}. We consider α2 = 0.5 and
g(α2) = 0.45. In Figure2 and Figure3, we consider µ = 0.4, c = 0.45. All the
results plotted are averaged over 50 independent experiments. In Figure2, we
fix M = 5 and compare the regret performance of the policies as a function
of time. We observe that W-FTPL performs better than other policies, and
RR has linear regret, which agrees with Theorem 2. In Figure3, we compare
the performance of the policies with respect to M for T = 104. We observe
that W-FTPL performs better than other policies, and the main difference
between the cost of policies is due to fetch cost. Also note that W-FTPL has
better dependence on M as compared to FTPL, which agrees with Theorem
2. From Theorem 2 we observe that for large values of M the regret of FTPL
is proportional to M/∆2

min where as W-FTPL is proportional to logM/∆2
min.

Therefore in Figure4, we compare the performance of the policies by varying
rent cost c for M = 500, µ = 0.4, and T = 104. Again we note that W-FTPL
outperforms RR and FTPL. As c gets closer to µ, the FTPL policy does
multiple fetches, and as a result, the regret increases when c is close to µ.

17



     0        2000        4000        6000        8000        10000   
     -50   

     0   

     50   

     100   

     150   

     200   

     Time   

   R
eg

re
t  

 

     RR   
     FTPL   
     W-FTPL   

Figure 2: Regret as a function of time horizon (T )

5.3. Trace driven arrivals

For trace-driven simulations, we use the data collected by Grid Workloads
Archive [24], which consists of requests arriving at computational servers.
Among the traces mentioned in [24] we use DAS-2 traces, which were pro-
vided by the Advanced School for Computing and Imaging (ASCI). We con-
sider slot duration as 1 hour and plot a snapshot of the trace in Figure 5.
We consider κ = 300 for all the experiments in this subsection. All the re-
sults plotted for trace driven experiments are averaged over 50 independent
experiments.

We consider partial service hosting with one partial level for our sim-
ulations. This dataset provides information on the number of processors
required to serve each request, and this number lies between 1 and 128 for
all requests. For this experiment, we consider hosting the entire service as
equivalent to having 128 processors at the edge and hosting the partial ser-
vice as having 16 processors at the edge. It follows that the hosting status
ρPt ∈ {0, 16/125(= 0.125), 1}. To compute g(0.125), we use the dataset to
compute the fraction of requests that require more than 16 processors for
service and obtain that g(0.125) = 0.0328.

In Figure6, we consider M = 500, c = 100, κ = 300 and compare the
regret performance of policies as a function of time. We observe that RR
performs better than other policies for most values of time horizon. This is
because RR attempts to mimic the optimal offline policy, which is not a static
policy for this arrival sequence. Note that FTPL and W-FTPL attempt to
mimic the optimal static policy and perform worse than RR.

In Figure7, we compare the performance of different policies with respect

18
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Figure 3: Cost, Regret as a function of fetch cost (M)

to M and fix c = 100, κ = 300. We observe that RR performs better than the
other policies for some values of M because of the same reason mentioned
before. In Figure8, we compare the performance of different policies by
varying rent cost c and fix M = 500, κ = 300. Again we note that RR
outperforms W-FTPL and FTPL in some cases.

Our simulation results thus indicate that FTPL and W-FTPL outperform
RR for i.i.d. stochastic arrivals. In the case where the arrival process is such
that the offline optimal policy is not static, RR can outperform FTPL and
W-FTPL. Additionally, RR can have linear regret with respect to time, while
FTPL and W-FTPL have sub-linear regret with respect to time for all arrival
processes considered.
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Figure 4: Cost, Regret as a function of rent cost (c)

6. Proof of theorems

6.1. Proof of Theorem 1(a)

Proof of Theorem 1(a). Recall that regret of any policy is given by

RPA(T, r) =
T∑
t=1

cρt + g(ρt)rt +M(ρt − ρt−1)+

−min
i
{cαiT + g(αi)RT +Mαi} .

Note that suprRPA(T, r) ≥ Er[RPA(T, r)] where the expectation is w.r.t some
specified distribution over request sequences. We lower bound Er[RPA(T, r)]
to get a lower bound on RPA(T ).

Er[RPA(T, r)] =
T∑
t=1

cρt + g(ρt)Er[rt] +M(ρt − ρt−1)+
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Figure 5: Arrivals in a slot for trace data considered

Figure 6: Regret as a function of time horizon

− Er[min
i
{cαiT + g(αi)RT +Mαi}]

≥
T∑
t=1

cρt + g(ρt)Er[rt]

− Er[min
i
{cαiT + g(αi)RT}]−M.

Let ` = arg mini 6=1
αi

1−g(αi) , X ∼ Ber( cα`
κ(1−g(α`))

), and rt = κX and i.i.d over-

time, therefore Er[rt] = cα`
1−g(α`)

. From Assumption 2 we have αi+g(αi)rt ≤ κ

for all 1 ≤ i ≤ K and 0 ≤ rt ≤ κ therefore cα`
κ(1−g(α`))

≤ 1 and X is a valid
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Figure 7: Cost, Regret as a function of fetch cost (M)

Bernoulli random variable.

Er[RPA(T, r)] ≥
T∑
t=1

cρt + g(ρt)
cα`

1− g(α`)

− Er[min
i
{cαiT + g(αi)RT}]−M

=
T∑
t=1

(1− g(ρt))
cρt

(1− g(ρt))
1ρt 6=0 + g(ρt)

cα`
1− g(α`)

− Er[min
i
{cαiT + g(αi)RT}]−M

(a)

≥
T∑
t=1

(1− g(ρt))
cα`

(1− g(α`))
+ g(ρt)

cα`
1− g(α`)

− Er[min
i
{cαiT + g(αi)RT}]−M
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(b)

≥ cTα`
1− g(α`)

− Er[min{RT , cTα` + g(α`)RT}]−M

(c)
=

1

2
Er[|RT − cTα` − g(α`)RT |]−M

=
κ(1− g(α`))

2
Er
[∣∣∣∣RT

κ
− Tcα`
κ(1− g(α`))

∣∣∣∣]−M
(d)
=Ω(
√
T ),

where (a) follows from definition of `, (b) follows because of min1≤k≤K ak ≤
min{ai, aj} for 1 ≤ i, j ≤ K, (c) follows from Lemma 15 in Section 7, and
(d) follows from Lemma 16 in Section 7.

6.2. Proof of Theorem 1(b)

Note that the RR algorithm in [3] can have only one intermediate level
of partial hosting i.e., ρRR

t ∈ {0, α2, 1}. So throughout the is subsection we
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consider ρRR
t ∈ {0, α2, 1}. We use the following lemmas to prove Theorem

1(b).

Lemma 2. RR does not fetch any non zero fraction of service for at least⌈
Mαi′

κ−cαi′−g(αi′ )κ

⌉
slots after eviction of complete service, where

αi′ = arg minαi 6=0
Mαi

κ−cαi−κg(αi) .

Proof. Without loss of generality we consider t = 0 is when RR last evicted
the service. If RR policy fetches αi 6= 0 fraction of service in slot t+ 1, then
cαit+ g(αi)Rt +Mαi < Rt.

We now prove the lemma by contradiction. Let us assume that RR fetches

αi fraction of the service in time slot tf + 1 and tf <
⌈

Mαi′
κ−cαi′−g(αi′ )κ

⌉
. Then

by using the definition of αi′ , we get tf <
Mαi

κ−cαi−g(αi)κ and cαitf + g(αi)κtf +
Mαi > κtf ≥ Rtf which is a contradiction.

Lemma 3. Once RR fetches any non zero fraction of service, it hosts (some
positive fraction of the service) for at least dM

c
e slots before it evicts the

completely.

Proof. Without loss of generality we consider t = 0 is when RR last fetched
the service and say it hosted αi 6= 0 fraction of the service. For the RR
policy to evict the service in slot t+ 1, we need cαit+ g(αi)Rt > Mαi +Rt,
or equivalently Rt <

cαit−Mαi
1−g(αi) .

We now prove the lemma by contradiction. Let us assume that RR evicts
the service in time slot te + 1 and te < dMc e. Then from the assumption

above, we must have Rte <
cαite−Mαi

1−g(αi) < 0 which is a contradiction.

Proof of Theorem 1(b). We split the entire time duration T into frames of
size tf + te and consider the arrival sequence in each frame as rt = κ for 1 ≤
t ≤ tf and rt = 0 for tf +1 ≤ t ≤ tf + te, where αi′ = arg minαi 6=0

Mαi
κ−cαi−κg(αi) ,

tf =
⌈

Mαi′
κ−cαi′−g(αi′ )κ

⌉
, and te = dM

c
e.

From Lemma 2 we know that RR does not fetch any fraction of service
till time tf . At t = tf + 1 RR fetches some positive fraction of the service
because cαi′tf + g(αi′)Rtf +Mαi′ < Rtf holds by definition of tf .

From Lemma 3 we know that RR does not evict the service for t ∈
[tf + 1, tf + te]. At t = tf + te + 1 RR evicts the service because for αi 6= 0,

cαite + g(αi)
∑tf+te

t=tf+1 rt < Mαi +
∑tf+te

t=tf+1 rt holds by definition of te.
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So amongst the first tf + te time-slots, the RR policy does not host for
the first tf slots and then hosts some positive fraction of service for the
following te slots. Let i∗ = arg mini cαiT + g(αiRT + Mαi) be the fraction
of service to be hosted by optimal static policy. If the optimal static policy
is to host αi∗ 6= 0 fraction of service then we have a regret of at least (κ −
cαi∗ − g(αi∗)κ)tf −Mαi∗ for initial frame and (κ− cαi∗ − g(αi∗)κ)tf = (κ−
cαi∗ − g(αi∗)κ)d Mαi′

κ−cαi′−g(αi′ )κ
e > 0 form second frame onwards because of

forwarding, which is a constant and does not depend on T . If the optimal
static policy is not to host the service, then we have a regret of cαite > 0 till
tf + te for some αi 6= 0, which is a constant and does not depend on T . So in
either case, a regret larger than some positive constant(say d) is occurred in
a frame of size tf + te. Since we split the entire time duration T into frames

of size tf + te = d Mαi′
κ−cαi′−g(αi′ )κ

e + dM
c
e and the request sequence is repeated

in each frame, we get linear regret.

RRR
A (T ) ≥

bT/(tf+te)c∑
f=1

d−Mαi∗

≥ bT/(tf + te)cd−Mαi∗

≥ d

(
T

Mαi′
κ−cαi′−g(αi′ )κ

+ M
c

+ 2
− 1

)
−Mαi∗

= Ω(T ).

6.3. Proof of Theorem 1(c)

The optimal static policy only fetches the optimal fraction of service to
be hosted once. Therefore,

RFTPL
A (T, r) =E[CFTPL(T, r)]

−min
i
{cαiT + g(αi)RT +Mαi}

≤E[CFTPL(T, r)]−min
i
{cαiT + g(αi)RT}. (3)

Since FTPL policy does not consider fetch cost M while making decisions
we can decouple the fetch cost and the non fetch cost incurred by the FTPL
policy. Therefore we can also decouple the expected regret incurred by FTPL
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into expected regret without fetch cost (M = 0) and the fetch cost incurred
by FTPL to bound (3). We first bound the expected regret of the FTPL
policy with fetch cost M = 0 and then add it’s expected fetch cost to get the
final regret bound.

Lemma 4. The regret for FTPL policy with non decreasing learning rate
{ηt}Tt=1 and M = 0 is given by

RFTPL
A (T ) ≤

√
2 logK

(
ηT + κ2

T∑
t=1

1

ηt

)
.

Proof. The proof of this theorem follows along the same lines as Theorem 1
of [25] and, Proposition 4.1 of [17]. Recall that ρPt represents the fraction of
service hosted in slot t by policy P and ρPt is a one hot vector where position
of one represents the level of service hosted at the edge. In slot t FTPL hosts
fraction of service ρFTPL

t = 〈ρFTPL
t , s〉, where ρFTPL

t = arg minρ∈X 〈ρ,Θt +
ηtγ〉. For ease of notation we suppress the policy in super script and denote
ρPt as ρt and ρPt as ρt in further discussion. Define a time varying potential
function

Φt(θ) = Eγ
[
min
ρ∈X
〈ρ,θ + ηtγ〉

]
, (4)

and observe that the gradient of Φt at Θt is Eγ [ρt]. So 〈∇Φt(Θt),θt〉 =
Eγ [〈ρt,θt〉]. Consequently

Eγ [〈ρt,θt〉] = 〈∇Φt(Θt),Θt+1 −Θt〉,

= Φt(Θt+1)−Φt(Θt)−
1

2
〈θt,∇2Φt(θ̃t)θt)〉,

where θ̃t is the line segment joining Θt+1 and Θt which follows from Taylor’s
expansion of Φt(Θt+1).

T∑
t=1

Eγ [〈ρt,θt〉]

=
T∑
t=1

Φt(Θt+1)−Φt(Θt)−
1

2
〈θt,∇2Φt(θ̃t)θt)〉,
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= ΦT (ΘT+1)−Φ1(Θ1) +
T∑
t=2

Φt−1(Θt)−Φt(Θt)

−
T∑
t=1

1

2
〈θt,∇2Φt(θ̃t)θt〉. (5)

By Jensen’s inequality

ΦT (ΘT+1) = E
[
min
ρ∈X
〈ρ,ΘT+1 + ηtγ〉

]
≤ min

ρ∈X
E [〈ρ,ΘT+1 + ηtγ〉]

(a)
= min

ρ∈X
〈ρ,ΘT+1〉,

where (a) follows because γi’s are standard Gaussian random variables. Re-
call that minρ∈X 〈ρ,ΘT+1〉 is the loss incurred by the offline static policy.
Therefore by rearranging (5) and using Jensen’s inequality we get

RFTPL
A (T ) ≤−Φ1(Θ1) +

T∑
t=2

Φt−1(Θt)−Φt(Θt)

−
T∑
t=1

1

2
〈θt,∇2Φt(θ̃t)θt〉. (6)

We bound each term in the RHS separately to get the final result.
The first term is −Φ1(Θ1) = −Φ1(0) = −η1Eγ [minρ〈ρ,γ〉]

= η1Eγ [maxρ∈X 〈ρ,γ〉] since Gaussian random variables are symmetric. By
using the result of Lemma 9 in [25], we get

−Φ1(0) ≤ η1

√
2 logK. (7)

The second term can be analyzed by considering

Φt−1(Θt)−Φt(Θt)

= Eγ [min
ρ∈X
〈ρ,θt + ηt−1γ〉 −min

ρ∈X
〈ρ,θt + ηtγ〉]

(a)

≤ Eγ [max
ρ∈X
〈ρ, (ηt−1 − ηt)γ〉]

≤ |ηt − ηt−1|
√

2 logK, (8)
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where (a) follows because maxy∈Y(f(y)−g(y)) ≥ maxy∈Y f(y)−maxy∈Y g(y)
for any arbitrary functions f , g. We obtain (8) by using Lemma 9 in [25].

Now we bound the third term in (6). Let H = ∇2Φt(θ̃t). By using
Lemma 7 of [26] we have,

Hi,j =
1

ηt
E[x̂(θ̃t + ηtγ)iγj].

If we replace ηt with ηt/κ and θt with θt/κ and apply Lemma 2 of [25] we get

−
〈
θt
κ
, κH

θt
κ

〉
≤ 2κ

ηt

√
2 logK

=⇒ −〈θt,∇2Φt(θ̃t)θt〉 ≤
2κ2

ηt

√
2 logK. (9)

By using (7), (8) and (9), we bound (6),

RFTPL
A (T ) ≤η1

√
2 logK +

T∑
t=2

|ηt − ηt−1|
√

2 logK

+
T∑
t=1

2κ2

ηt

√
2 logK

≤ηT
√

2 logK +
T∑
t=1

2κ2

ηt

√
2 logK

≤ηT
√

2 logK + 2κ2
√

2 logK
T∑
t=1

1

ηt
.

Now we bound the expected fetch cost incurred by FTPL policy.

Lemma 5. The expected fetch cost under FTPL policy upto time T denoted
by E[CFTPL

F (T )] with learning rate ηt = α
√
t is bounded as follows

E[CFTPL
F (T )] ≤ MK2(c+ 2κ)

2α
√
π

√
T + 1.

Proof. The proof of this theorem follows similar a line of arguments as in [17]
for the case with N = 2 and cache size 1 case. The fetch cost is incurred only
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when the service is fetched. The overall cost of fetching is
∑T

t=1 M(ρt+1−ρt)+.
So, the expected fetch cost is given by

E[CFTPL
F (T )] = E

[
T∑
t=1

M(ρt+1 − ρt)1{ρt+1>ρt}

]

≤M
T∑
t=1

P(ρt+1 > ρt)

≤M
T∑
t=1

∑
j>i

P(ρt+1 = αj, ρt = αi).

Let E (t)
i,j be the event that ρt = αi, ρt+1 = αj. E (t)

i,j occurs only if Θt,i +
ηtγi < Θt,j + ηtγj, Θt+1,i + ηt+1γi > Θt+1,j + ηt+1γj. Let δα = αj − αi,
δg = g(αi)− g(αj), note that 0 < δα ≤ 1, 0 < δg ≤ 1.

P(E (t)
i,j )

≤ P (Θt,i + ηtγi < Θt,j + ηtγj,

Θt+1,i + ηt+1γi > Θt+1,j + ηt+1γj)

= P
(

Θt+1,j −Θt+1,i√
2ηt+1

<
(γi − γj)√

2
<

Θt,j −Θt,i√
2ηt

)
(a)

≤ Θt,j −Θt,i

2
√
πηt

− Θt+1,j −Θt+1,i

2
√
πηt+1

=
1

2
√
π

(
(c(t− 1)δα − δgRt−1)

(
1

ηt
− 1

ηt+1

))
− 1

2
√
π

(
cδα − δgrt
ηt+1

)
≤ 1

2
√
π

(
ct

(
1

ηt
− 1

ηt+1

)
+
δgrt − cδα
ηt+1

)
(b)

≤ 1

2
√
π

(
ct

(
1

ηt
− 1

ηt+1

)
+

κ

ηt+1

)
(10)

=
1

2α
√
π

(
ct

(
1√
t
− 1√

t+ 1

)
+

κ√
t+ 1

)
=

1

2α
√
π

(
c

√
t

t+ 1

1√
t+
√
t+ 1

+
κ√
t+ 1

)
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(c)

≤ (c+ 2κ)

4α
√
π(t+ 1)

.

Here (a) follows from the fact that P(a < Z < b) ≤ b−a√
2π

, where Z ∼ N (0, 1),

(b) follows because δg ≤ 1 and rt ≤ κ and, (c) follows because
√
t√

t+
√
t+1
≤ 1

2
.

Therefore,

E[CFTPL
f (T )] ≤ M(c+ 2κ)

4α
√
π

T∑
t=1

∑
j>i

1√
t+ 1

≤ MK2(c+ 2κ)

2α
√
π

√
T + 1.

Proof of Theorem 1(c). By using Lemma 4 and 5 we get,

RFTPL
A (T ) ≤

√
2 logK

(
α
√
T + 2κ2

T∑
t=1

1

α
√
t

)

+
K2M(c+ 2κ)

2α
√
π

√
T + 1

≤
√

2T logK

(
α +

4κ2

α

)
+
K2M(c+ 2κ)

2α
√
π

√
T + 1.

6.4. Proof of Theorem 1(d)

Proof of Theorem 1(d). We characterize the fetch cost under FTPL to ana-
lyze the impact of M on the total cost incurred under FTPL. Fetch cost is
incurred if ρt−1 = 0, ρt = 1. Consider a request sequence r1 = 1 and rt = 0
for all t ≥ 2. The optimal static policy is to not host any fraction of service
i.e., to forward all the requests to back-end server.

The probability of hosting αi, 1 ≤ i ≤ K fraction of service in first slot
is 1/K. Hosting any non zero fraction of service will incur at least Mα2

fetch cost. Therefore the expected fetch cost of FTPL policy will be at least
Mα2/K which is a lower bound on the expected cost of FTPL policy for
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this request sequence. For FTPL we can decouple the fetch cost and the non
fetch cost and FTPL does not consider M while making decisions. Therefore
Mα2/K is also a lower bound for regret of FTPL. This completes the proof.

6.5. Proof of Theorem 1(e)

Proof of Theorem 1(e). Recall that Ts = min{t : t <
(maxi6=j(Θt+1,i−Θt+1,j))

2

κ2β(logM)1+δ }.
For arrival sequences with requests arriving in time-slots 1 to T , we have two
possible cases, namely, Ts ≥ T and Ts < T . We consider each case to bound
the regret of W-FTPL policy.

Case I (Ts ≥ T ): Let r(1) be a request sequence chosen by adversary such
that Ts ≥ T , then

|max
i 6=j

(ΘT+1,j −ΘT+1,i)| < κ
√
βT (logM)1+δ

=⇒ |max
i

(ΘT+1,1 −ΘT+1,i)| < κ
√
βT (logM)1+δ

(a)
=⇒ RW-FTPL

A (T ) < κ
√
βT (logM)1+δ,

(a) follows because ρt = 0 for t < Ts for W-FTPL.
Case II (Ts < T ): Let r(2) be a request sequence chosen by adversary

such that Ts < T , then by using case I we can bound

|max
i 6=j

ΘTs,i −ΘTs,j| < κ
√
β(Ts − 1)(logM)1+δ

=⇒ RW-FTPL
A (Ts − 1) < κ

√
βT (logM)1+δ.

Thus combining both cases we get upper bound on regret in wait phase
as

RW-FTPL
A (Ts − 1) < κ

√
βT (logM)1+δ. (11)

Note that W-FTPL policy follows FTPL policy after its waiting time i.e.,
from time Ts. Therefore W-FTPL and FTPL take same decisions and have
same cost from time Ts to T . Thus the regret in a slot is also same for W-
FTPL and FTPL from time Ts to T . If Ts ≥ T then only wait phase will be
there and regret in FTPL phase is considered to be zero. We denote regret
from time t1 to t2 as RPA(t1 : t2).

RW-FTPL
A (T ) = RW-FTPL

A (Ts − 1) +RW-FTPL
A (Ts : T )
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= RW-FTPL
A (Ts − 1) +RFTPL

A (Ts : T )

≤ RW-FTPL
A (Ts − 1) +RFTPL

A (1 : T ). (12)

By (11), (12) and Theorem 1(c) we get

RW-FTPL
A (T ) ≤κ

√
βT (logM)1+δ

+
√

2T logK

(
α +

4κ2

α2

)
+
K2M(c+ 2κ)

2α
√
π

√
T + 1.

6.6. Proof of Theorem 2(a)

Proof of Theorem 2(a). From Lemma 3 we know that once RR fetches any
non-zero fraction of service, it hosts (some positive fraction of the service) for
at least

⌈
M
c

⌉
slots before it evicts completely. From Lemma 2, we know that,

once RR evicts the complete service from the edge, then it does not fetch any

non zero fraction of the service for at least
⌈

Mαi′
κ−cαi′−g(αi′ )κ

⌉
slots. We divide

the entire time T into frames of size fs =
⌈
M
c

⌉
+
⌈

Mαi′
κ−cαi′−g(αi′ )κ

⌉
slots. Let

us define an event F as the frame that starts with
⌈

Mαi′
κ−cαi′−g(αi′ )κ

⌉
slots with

κ arrivals in each slot and followed by
⌈
M
c

⌉
slots of zeros arrivals. Let the

probability of event F occurring be P(F) (independent of T ). Conditioned
on event F , if optimal static policy is to host non zero fraction of service then

we have regret at least (κ−cαi+g(αi)κ)
⌈

Mαi′
κ−cαi′−g(αi′ )κ

⌉
> 0 in a frame where

αi 6= 0. If optimal is not to host any fraction of service then we have regret
of cαi

⌈
M
c

⌉
> 0 in a frame where αi 6= 0. Therefore conditioned on event F

RR always has a finite nonzero regret say d(> 0) which is independent of T .
Therefore,

RRR
S (T ) = Er

bT/fsc∑
f=1

d1(event F occured)


≥
(
T

fs
− 1

)
P(F)d
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≥

(
T

M
κ−cαi′−g(αi′ )κ

+ M
c

+ 2
− 1

)
P(F)d

= Ω(T ).

So even in the stochastic case RR observes linear regret.

6.7. Proof of Theorem 2(b)

Lemma 6. Probability of hosting a sub-optimal fraction of service αj 6= αi?
under the FTPL policy in time slot t+ 1 is bounded as follows

P(ρt+1 = αj) ≤ exp

(
−
t2∆2

j

16η2
t+1

)
+ exp

(−∆2
j t

2κ2

)
.

Proof. FTPL hosts αj fraction of service if cαit+ g(αi)Rt + ηt+1γi > cαjt+
g(αj)Rt + ηt+1γj in time slot t+ 1, for all i 6= j. Let pt,j = P(ρt+1 = αj).

pt,j ≤ P(cαjt+ g(αj)Rt + ηt+1γj

< cαi?t+ g(αi?)Rt + ηt+1γi?)

= P(ηt+1(γi? − γj)
≥ c(αj − αi?)t+ (g(αj)− g(αi?))Rt).

There can be two possibilities one is αj > αi? or αj < αi? we bound the
probability pt,j by considering each case separately.
Case 1 (αj > αi?): Since g(.) is a decreasing function g(αj) < g(αi?). Let Ej
be the event that Rt < µt+ t∆j/2.

pt,j ≤P(ηt+1(γi? − γj) ≥ c(αj − αi?)t
+ (g(αj)− g(αi?))Rt, Ej) + P(Ecj )

≤P(ηt+1(γi? − γj) ≥ t∆j − (g(αi?)− g(αj))t∆j/2)

+ P(Ecj )
≤P(ηt+1(γi? − γj) ≥ t∆j/2) + P(Ecj )
(a)

≤ exp

(
−
t2∆2

j

16η2
t+1

)
+ exp

(−∆2
j t

2κ2

)
,

where (a) is obtained by using the fact that complementary CDF of standard
Gaussian Q(x) ≤ e−x

2/2 for x > 0 and Hoeffding’s inequality [27].
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Case 2 (αj < αi?): Let Ej be an event Rt > µt− t∆j/2.

pt,j ≤P(ηt+1(γi? − γj) ≥ c(αj − αi?)t
+ (g(αj)− g(αi?))Rt, Ej) + P(Ecj )

≤P(ηt+1(γi? − γj) ≥ t∆j − (g(αj)− g(αi?))t∆j/2)

+ P(Ecj )
≤P(ηt+1(γi? − γj) ≥ t∆j/2) + P(Ecj )
(a)

≤ exp

(
−
t2∆2

j

16η2
t+1

)
+ exp

(−∆2
j t

2κ2

)
,

where (a) is obtained by using the fact that Q(x) ≤ e−x
2/2 for x > 0 and

Hoeffding’s inequality [27].
Therefore by combining both cases we get

P(ρt+1 = αi) ≤ exp

(
−
t2∆2

j

16η2
t+1

)
+ exp

(−∆2
j t

2κ2

)
. (13)

Lemma 7. For M = 0,

RFTPL
S (T ) ≤

(√
2 logK +

2
√

2h1 logK

∆min

)(
α +

4κ2

α

)
+

16α2 + 4κ2

∆min

,

where h1 = 2 max{16α2, 2κ2}.

Proof. Let t0 = dh1
logK
∆2

min
e where h1 = 2 max{16α2, 2κ2}. From (2) we have

RFTPL
S (T ) ≤

(
T∑
t=1

cρt + g(ρt)µ− µi?
)

=
T∑
t=1

(∑
i

µiP(ρt = αi)

)
− µi?

=
T∑
t=1

∑
i 6=i?

∆iP(ρt = αi)
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=

t0∑
t=1

∑
i 6=i?

∆iP(ρt = αi)

+
T∑

t=t0+1

∑
i 6=i?

∆iP(ρt = αi)

(a)

≤
√

2t0 logK

(
α +

4κ2

α

)
+

T∑
t=t0+1

∑
i 6=i?

∆iP(ρt = αi),

where (a) is obtained by using adversarial regret bound when M = 0. Now
we consider each term in RHS separately and bound them.√

2t0 logK ≤
√

2 logK

(
1 +

√
h1 logK

∆min

)
.

By using Lemma 6 we have

∆jP(ρt+1 = αj)

≤∆j

[
exp

(
−
t2∆2

j

16η2
t+1

)
+ exp

(−∆2
j t

2κ2

)]
=∆j

[
exp

(
−
t∆2

j

16α2

)
+ exp

(−∆2
j t

2κ2

)]
(b)

≤∆min

[
exp

(
−t∆

2
min

16α2

)
+ exp

(
−∆2

mint

2κ2

)]
.

Here (b) is obtained using the fact that f(u) = ue−u
2

is a decreasing function

over u ∈ [1,∞), and for t > t0,
t∆2

j

16α2 >
h1 logK∆2

j

16α2∆2
min
≥ 1 and

t∆2
j

2κ2 >
h1 logK∆2

j

2κ2∆2
min
≥ 1.

Therefore,

RFTPL
S (T )

≤
(√

2 logK +
2
√

2h1 logK

∆min

)(
α +

4κ2

α

)
+

T∑
t=t0

K∆min

[
exp

(
−t∆

2
min

16α2

)
+ exp

(
−∆2

mint

2κ2

)]
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(c)

≤
(√

2 logK +
2
√

2h1 logK

∆min

)(
α +

4κ2

α

)
+

16α2 + 2κ2

∆min

+ 2∆min

≤
(√

2 logK +
2
√

2h1 logK

∆min

)(
α +

4κ2

α

)
+

16α2 + 4κ2

∆min

.

Here (c) follows because for t > t0 we have K exp(−t∆2
min/16α2) < 1,

K exp(−t∆2
min/2κ

2) < 1 and
∑∞

t=1 e
−at ≤ 1/a for a > 0.

Lemma 8. Fetch cost under FTPL policy with learning rate ηt = α
√
t− 1

is bounded as follows

E[CFTPL
f (T )] ≤M

16α2 + 2κ2

∆2
min

.

Proof. The fetch cost is incurred when we fetch extra fraction of service.
Similar to the proof of Lemma 5 we get

E[CFTPL
f (T )] ≤M

T∑
t=1

P(ρt < ρt+1)

= M
T∑
t=1

∑
j>i

P(ρt = αi, ρt+1 = αj).

Let E (t)
i,j be the event that ρt = αi, ρt+1 = αj. E (t)

i,j occurs if Θt,i + ηtγi <
Θt,j + ηtγj, Θt+1,i + ηt+1γi > Θt+1,j + ηt+1γj.

P(E (t)
i,j ) = P

(
Θt+1,j −Θt+1,i√

2ηt+1

≤ γi − γj√
2
≤ Θt,j −Θt,i√

2ηt

)
.

We consider two cases µi > µj and µi < µj and bound the probability.
Case 1 (µi > µj): Let E1 be the event that |Rt−1−µ(t− 1)| ≤ |∆ij|(t− 1)/2,

P(E (t)
i,j )

≤P
(
γi − γj√

2
≤ Θt,j −Θt,i√

2ηt

)
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≤P
(
γi − γj√

2
≤ Θt,j −Θt,i√

2ηt
, E1

)
+ P(Ec1)

=P
(
γi − γj√

2
≤ c(αj − αi)(t− 1)√

2ηt

−(g(αi)− g(αj))Rt−1√
2ηt

, E1

)
+ P(Ec1)

≤P
(
γi − γj√

2
≤ −|∆ij|(t− 1)

2
√

2ηt

)
+ P(Ec1)

(a)

≤ exp

(
−

(t− 1)2∆2
ij

16η2
t

)
+ exp

(−∆2
ij(t− 1)

2κ2

)
≤ exp

(
−(t− 1)2∆2

min

16η2
t

)
+ exp

(
−∆2

min(t− 1)

2κ2

)
≤ exp

(
−(t− 1)∆2

min

16α2

)
+ exp

(
−∆2

min(t− 1)

2κ2

)
,

where (a) is obtained by using the fact that Q(x) ≤ e−x
2/2 for x > 0 and

Hoeffding’s inequality [27].
Case 2 (µi < µj): Let E2 be the event that |Rt − µt| ≤ |∆ij|t/2,

P(E (t)
i,j )

≤P
(

Θt+1,j −Θt+1,i√
2ηt+1

≤ γi − γj√
2

)
≤P
(
c(αj − αi)t− (g(αi)− g(αj))Rt√

2ηt
≤ γi − γj√

2

)
≤P
(
γi − γj√

2
≥ c(αj − αi)t− (g(αi)− g(αj))Rt√

2ηt
, E2

)
+ P(Ec2)

≤P
(
γi − γj√

2
≥ |∆ij|t

2
√

2ηt

)
+ P(Ec2)

(b)

≤ exp

(
−
t2∆2

ij

16η2
t

)
+ exp

(−∆2
ijt

2κ2

)
≤ exp

(
−t

2∆2
min

16η2
t

)
+ exp

(
−∆2

mint

2κ2

)
≤ exp

(
−t∆

2
min

16α2

)
+ exp

(
−∆2

mint

2κ2

)
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≤ exp

(
−(t− 1)∆2

min

16α2

)
+ exp

(
−∆2

min(t− 1)

2κ2

)
,

where (b) is obtained by using the fact that Q(x) ≤ e−x
2/2 for x > 0 and

Hoeffding’s inequality [27].
From combining both cases we get

P(E (t)
i,j ) ≤ exp

(
−(t− 1)∆2

min

16α2

)
+ exp

(
−∆2

min(t− 1)

2κ2

)
. (14)

Therefore,

E[CFTPL
F ] ≤M

T∑
t=1

∑
j>i

P(E (t)
i,j )

≤MK2

T−1∑
t=1

exp

(
−t∆

2
min

16α2

)
+ exp

(
−∆2

mint

2κ2

)
+MK2

≤MK2 16α2 + 3κ2

∆2
min

.

Proof of Theorem 2(b). Note that FTPL policy does not consider fetch cost
M while taking the decisions. By using Lemma 7, 8 we get the result stated.

6.8. Proof of Theorem 2(c)

Lemma 9. Under the W-FTPL policy, Ts > t′ if and only if there exist t < t′

such that the following condition holds:

(g(αj̃t)− g(αĩt))µ̂t > −c(αj̃t − αĩt) + κ

√
β(logM)1+δ

t
,

or

(g(αj̃t)− g(αĩt))µ̂t < −c(αj̃t − αĩt)− κ
√
β(logM)1+δ

t
,

where (̃it, j̃t) = arg maxi 6=j Θt+1,i −Θt+1,j, µ̂t = Rt/t.
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Proof. Let (̃it, j̃t) = arg maxi 6=j Θt+1,i−Θt+1,j, µ̂t = Rt/t. Ts > t′ if and only
if there exist t < t′ such that

|maxi 6=j(Θt+1,i −Θt+1,j)|
t

< κ

√
β(logM)1+δ

t

⇐⇒
|Θt+1,j̃t

−Θt+1,̃it|

t
> κ

√
β(logM)1+δ

t
m

|c(αj̃t − αĩt) + (g(αj̃t)− g(αĩt))µ̂t| > κ

√
β(logM)1+δ

t
m

(g(αj̃t)− g(αĩt))µ̂t > −c(αj̃t − αĩt) + κ

√
β(logM)1+δ

t
or

(g(αj̃t)− g(αĩt))µ̂t < −c(αj̃t − αĩt)− κ
√
β(logM)1+δ

t
.

This completes the proof.

Lemma 10. Under the W-FTPL policy, Ts >
(
√
β−1)2(logM)1+δ

∆2
max

with probabil-

ity at least 1− (
√
β−1)2(logM)1+δ

M2(logM)δ∆2
max

.

Proof. Let Et be the event that

|µ− µ̂t| ≤ κ

√
(logM)1+δ

t
,

where µ̂t = Rt/t. By using Hoeffding’s inequality [27] we get

P(Et) ≥ 1− 1

M2(logM)δ
.

Let E = ∩T0
t=1Et, where T0 = (

√
β−1)2κ2(logM)1+δ

∆2
max

. Using the union bound, we
get:

P(E) ≥ 1− T0

M2(logM)δ
.

Let εt = κ
√

β(logM)1+δ

t
. We prove the lemma by contradiction. Let us consider

Ts <
(
√
β − 1)2κ2(logM)1+δ

∆2
max

,
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and E holds, then by Lemma 9, ∃t < (
√
β−1)2κ2(logM)1+δ

∆2
max

such that

(g(αj̃t)− g(αĩt))µ̂t > −c(αj̃t − αĩt) + κ

√
β(logM)1+δ

t
,

or

(g(αj̃t)− g(αĩt))µ̂t < −c(αj̃t − αĩt)− κ
√
β(logM)1+δ

t
,

holds. There are two possibilities αj̃t < αĩt , αj̃t > αĩt we consider them
separately to prove the final result.
Case 1 (αj̃t < αĩt): It follows that

(g(αj̃t)− g(αĩt))µ̂t > −c(αj̃t − αĩt) + εt

=⇒ µ̂t − µ >
c(αĩt − αj̃t) + εt

g(αj̃t)− g(αĩt)
− µ

=⇒ κ

√
(logM)1+δ

t
>
−∆max + εt

g(αj̃t)− g(αĩt)

=⇒ (
√
β − g(αj̃t) + g(αĩt))κ

√
(logM)1+δ

t
< ∆max

=⇒ (
√
β − 1))κ

√
(logM)1+δ

t
< ∆max

=⇒ t >
(
√
β − 1)2κ2(logM)1+δ

∆2
max

,

which is a contradiction. Alternatively,

(g(αj̃t)− g(αĩt))µ̂t < −c(αj̃t − αĩt)− εt

=⇒ µ̂t − µ <
c(αĩt − αj̃t)− εt
g(αj̃t)− g(αĩt)

− µ

=⇒ −κ
√

(logM)1+δ

t
<

∆max − εt
g(αj̃t)− g(αĩt)

=⇒ (
√
β − g(αj̃t) + g(αĩt))κ

√
(logM)1+δ

t
< ∆max

=⇒ (
√
β − 1))κ

√
(logM)1+δ

t
< ∆max
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=⇒ t >
(
√
β − 1)2κ2(logM)1+δ

∆2
max

,

which is also a contradiction.
Case 2 (αj̃t > αĩt): It follows that:

(g(αj̃t)− g(αĩt))µ̂t > −c(αj̃t − αĩt) + εt

=⇒ µ̂t − µ <
c(αj̃t − αĩt)− εt
g(αĩt)− g(αj̃t)

− µ

=⇒ −κ
√

(logM)1+δ

t
<

∆max − εt
g(αĩt)− g(αj̃t)

=⇒ t >
(
√
β − 1)2κ2(logM)1+δ

∆2
max

,

which is a contradiction. Alternatively,

(g(αj̃t)− g(αĩt))µ̂t < −c(αj̃t − αĩt)− εt

=⇒ µ̂t − µ >
c(αj̃t − αĩt) + εt

g(αĩt)− g(αj̃t)
− µ

=⇒ κ

√
(logM)1+δ

t
>
−∆max + εt

g(αĩt)− g(αj̃t)

=⇒ t >
(
√
β − 1)2κ2(logM)1+δ

∆2
max

,

which is also a contradiction.
Therefore Ts >

(
√
β−1)2κ2(logM)1+δ

∆2
max

, if E occurs, which happens with prob-

ability at least 1− (
√
β−1)2κ2(logM)1+δ

M2(logM)δ∆2
max

.

Lemma 11. Under the W-FTPL policy, P(Ts > t) ≤ exp(−∆2
mint

2κ2 ) for t >
4βκ2(logM)1+δ

∆2
min

.

Proof. For t > 4βκ2(logM)1+δ

∆2
min

, we have ∆min

2
> κ

√
β(logM)1+δ

t
. For Ts > t, we

have

(g(αj̃t)− g(αĩt))µ̂t < −c(αj̃t − αĩt) + κ

√
β(logM)1+δ

t
,
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and

(g(αj̃t)− g(αĩt))µ̂t > −c(αj̃t − αĩt)− κ
√
β(logM)1+δ

t
.

Let us consider the following cases
Case 1 (αj̃t < αĩt , ∆ĩtj̃t

> 0):

P(Ts > t) ≤ P

µ̂t > −c(αj̃t − αĩt)− κ
√

β(logM)1+δ

t

(g(αj̃t)− g(αĩt))


≤ P

µ̂t − µ > ∆ĩtj̃t
− κ
√

β(logM)1+δ

t

g(αj̃t)− g(αĩt)


≤ P

(
µ̂t − µ >

∆min −∆min/2

g(αj̃t)− g(αĩt)

)
≤ P

(
µ̂t − µ >

∆min

2

)
(a)

≤ exp

(
−∆2

mint

2κ2

)
,

where (a) is obtained by using Hoeffding’s inequality [27].
Case 2 (αj̃t < αĩt , ∆ĩtj̃t

< 0):

P(Ts > t) ≤ P

µ̂t < −c(αj̃t − αĩt) + κ
√

β(logM)1+δ

t

(g(αj̃t)− g(αĩt))


≤ P

µ̂t − µ < ∆ĩtj̃t
+ κ
√

β(logM)1+δ

t

g(αj̃t)− g(αĩt)


≤ P

(
µ̂t − µ <

−∆min + ∆min/2

g(αj̃t)− g(αĩt)

)
≤ P

(
µ̂t − µ <

−∆min

2

)
(a)

≤ exp

(
−∆2

mint

2κ2

)
.
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where (a) is obtained by using Hoeffding’s inequality [27].
Case 3 (αj̃t > αĩt , ∆ĩtj̃t

> 0):

P(Ts > t) ≤ P

µ̂t < −c(αj̃t − αĩt)− κ
√

β(logM)1+δ

t

(g(αj̃t)− g(αĩt))


≤ P

µ̂t − µ < −∆ĩtj̃t
+ κ
√

β(logM)1+δ

t

g(αĩt)− g(αj̃t)


≤ P

µ̂t − µ < −∆min + κ
√

β(logM)1+δ

t

g(αĩt)− g(αj̃t)


≤ P

(
µ̂t − µ <

−∆min/2

g(αĩt)− g(αj̃t)

)
≤ P (µ̂t − µ < −∆min/2)

(a)

≤ exp

(
−∆2

mint

2κ2

)
.

where (a) is obtained by using Hoeffding’s inequality [27].
Case 4 (αj̃t > αĩt , ∆ĩtj̃t

< 0):

P(Ts > t) ≤ P

µ̂t > −c(αj̃t − αĩt) + κ
√

β(logM)1+δ

t

(g(αj̃t)− g(αĩt))


≤ P

µ̂t − µ > −∆ĩtj̃t
− κ
√

β(logM)1+δ

t

g(αĩt)− g(αj̃t)


≤ P

(
µ̂t − µ >

∆min −∆min/2

g(αĩt)− g(αj̃t)

)
≤ P

(
µ̂t − µ >

∆min

2

)
(a)

≤ exp

(
−∆2

mint

2κ2

)
,
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where (a) is obtained by using Hoeffding’s inequality [27]. The result follows
by combining these cases.

Lemma 12. Under the W-FTPL policy

E[Ts] ≤ 1 +
4βκ2(logM)1+δ

∆2
min

+
1

M2β

2κ2

∆2
min

.

Proof. Let T1 = d4βκ2(logM)1+δ

∆2
min

e. It follows that

E[Ts] =
T∑
t=1

P(Ts > t)

=

T1∑
t=1

P(Ts > t) +
T∑

t=T1+1

P(Ts > t)

(a)

≤ T1 +
T∑

t=T1

exp

(
−∆2

mint

2κ2

)
≤ 1 +

4βκ2(logM)1+δ

∆2
min

+
1

M2β(logM)δ

2κ2

∆2
min

,

where (a) is obtained by using Lemma 11.

Proof of Theorem 2(c). Under W-FTPL,

Er[CW-FTPL(T, r)] =Er[Ts] + Er

[
T∑

t=Ts+1

(cρt + g(ρt)rt)

]

+MEr

[
T∑

t=Ts+1

P(ρt > ρt−1)

]
.

By the using definition of regret we get,

RW-FTPL
S (T ) ≤E[Ts] +

T∑
t=1

(cρt + µg(ρt))− µi?

+MEr

[
T∑

t=Ts+1

P(ρt > ρt−1)

]
.
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By Lemma 7, we get

RW-FTPL
S (T ) ≤E[Ts] +

16α2 + 4κ2

∆min

+

(√
2 logK +

2
√

2h1 logK

∆min

)(
α +

4κ2

α

)
+MEr

[
T∑

t=Ts+1

P(ρt > ρt−1)

]
.

Let Er[Cf ] = MEr
[∑T

t=Ts+1 P(ρt > ρt−1)
]
, then

Er[Cf ] =Er[Cf |Ts ≤ T0]P(Ts ≤ T0)

+ Er[Cf |Ts > T0]P(Ts > T0)

≤E[Cf |Ts = 1]P(Ts ≤ T0) + E[Cf |Ts = dT0e]
(a)

≤MP(Ts ≤ T0)E[CFTPL
F ]

+M
T∑

t=dT0e

(
exp

(
−∆2

mint

16α2

)
+ e−∆2

mint/2κ
2

)

≤MP(Ts ≤ T0)
16α2 + 3κ2

∆2
min

+
16α2

∆2
min

exp

(
−∆2

minT0

16α2

)
+

2κ2

∆2
min

exp

(
−∆2

minT0

2κ2

)
.

Here, (a) is obtained by using inequality (14). By considering T0 = (
√
β−1)2κ2(logM)1+δ

∆2
max

and using Lemma 10, 12 we get,

RW-FTPL
S (T )

≤1 +
4βκ2(logM)1+δ

∆2
min

+
1

M2β(logM)δ

2κ2

∆2
min

+
(16α2 + 4κ2)

∆min

+

(√
2 logK +

2
√

2h1 logK

∆min

)(
α +

4κ2

α

)
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+M
(
√
β − 1)2κ2(logM)1+δ

∆2
maxM

2(logM)δ

16α2 + 3κ2

∆2
min

+

 16α2M

M
(
√
β−1)2κ2∆2

min
(logM)δ

16α2∆2
max

+
2Mκ2

M
(
√
β−1)2∆2

min
(logM)δ

2∆2
max


× 1

∆2
min

.

For large values of M we have

RW-FTPL
S (T )

≤1 +
4βκ2(logM)1+δ

∆2
min

+
2κ2

∆2
min

+
(16α2 + 4κ2)

∆min

+

(√
2 logK +

2
√

2h1 logK

∆min

)(
α +

4κ2

α

)
+

(
√
β − 1)2κ2(logM)1+δ

∆2
max

16α2 + 3κ2

∆2
min

+
16α2 + 2κ2

∆2
min

≤1 + βκ2(logM)1+δ

(
4

∆min2

+
16α2 + 3κ2

∆min2∆2
max

)
+ (16α2 + 4κ2)

(
1

∆min

+
1

∆min2

)
+

(√
2 logK +

2
√

2h1 logK

∆min

)(
α +

4κ2

α

)
.

6.9. Proof of Theorem 3(a)

Lemma 13. The cost of the offline optimal policy is lower bounded as follows

COPT-OFF(T, r) ≥ RT

κ2
(min

i
cαi + g(αi)κ).
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Proof. The cost incurred by the optimal offline policy with M > 0 is lower
bounded by the cost incurred by the optimal offline policy when M = 0. For
M > 0, there is an additional fetching cost. Therefore,

COPT-OFF(T, r) ≥
T∑
t=1

min
i

(cαi + g(αi)rt)

≥
T∑
t=1

min
i

(cαi/κ+ g(αi)rt)

≥
T∑
t=1

min
i

(cαi/κ+ g(αi))1{rt≥1}

≥
T∑
t=1

min
i

(cαi/κ+ g(αi))rt/κ

≥ RT

κ2
(min

i
cαi + g(αi)κ).

Lemma 14. The expected cost of FTPL policy for any request sequence r
for ηt = α

√
t− 1, α > 0, can be upper bounded as follows

E[CFTPL(T, r)] ≤
(

(3 + 2M/c) max
αi 6=0

1− g(αi)

αi

)
RT

+(c+M)
K∑
i=2

16α2

c2α2
i

.

Proof. FTPL does not host any fraction the service for time t + 1 if cαit +
g(αi)Rt + ηt+1γi > Rt + ηt+1γ1, for all i 6= 1. The probability of hosting any
non zero fraction of service (ph,t) in time slot t+ 1 is given as

ph,t ≤
K∑
i=2

P(cαit+ g(αi)Rt + ηt+1γi < Rt + ηt+1γ1)

=
K∑
i=2

P
(
γ1 − γi√

2
>
cαit+ g(αi)Rt −Rt√

2ηt+1

)
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=
K∑
i=2

P
(
γ1 − γi√

2
>
cαit− (1− g(αi))Rt√

2ηt+1

)
.

Let T ′ = 2RT
c

maxαi 6=0
1−g(αi)
αi

, if t ≥ T ′ then Rt ≤ RT ≤ ct
2

minαi 6=0
αi

1−g(αi) .

Therefore for t ≥ T ′, Rt ≤ cαit
2(1−g(αi)) for all αi 6= 0 and we get

ph,t ≤
K∑
i=2

P
(
γ1 − γi√

2
>
cαit− cαit/2√

2ηt+1

)

≤
K∑
i=2

exp

(
− c

2α2
i t

2

16η2
t+1

)

=
K∑
i=2

exp

(
−c

2α2
i t

16α2

)
. (15)

Therefore, the expected cost under FTPL can be bounded as

E[CFTPL(T, r)]

≤
T∑
t=1

(c+M)ph,t + rt

=RT +
T∑
t=1

(c+M)ph,t

≤RT + (c+M)T ′ + (c+M)
T∑

t=dT ′e

ph,t

(a)

≤RT + (c+M)T ′

+ (c+M)
T∑

t=dT ′e

K∑
i=2

exp

(
−c

2α2
i t

16α2

)

≤
(

(3 + 2M/c) max
αi 6=0

1− g(αi)

αi

)
RT

+ (c+M)
K∑
i=2

16α2

c2α2
i

.
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Here (a) follows from (15). If T < T ′, then the bound will only have the
first term and even in that case the above bound holds. Therefore the above
bound holds for any T .

Proof of Theorem 3(a). By using Lemma 13, we have

σFTPL
A ≤ sup

r

E[CFTPL(T, r)]

(mini cαi + g(αi)κ)RT/κ2

(a)

≤ κ2(3 + 2M/c)

mini(cαi + g(αi)κ)
max
αi 6=0

1− g(αi)

αi

+ sup
r

κ2(M + c)

RT mini(cαi + g(αi)κ)

K∑
i=2

16α2

c2α2
i

≤ κ2(3 + 2M/c)

mini(cαi + g(αi)κ)
max
αi 6=0

1− g(αi)

αi

+
κ2(M + c)

mini(cαi + g(αi)κ)

K∑
i=2

16α2

c2α2
i

.

Here (a) is obtained by using Lemma 14.

6.10. Proof of Theorem 3(b)

Proof of Theorem 3(b). By using Lemma 13, we have

σW-FTPL
A ≤ sup

r

RTs + E[CFTPL
A (T, r)]

RT (mini{cαi + g(αi)κ})/κ2

(a)

≤ κ2(3 + 2M/c)

mini(cαi + g(αi)κ)
max
αi 6=0

1− g(αi)

αi

+
κ2(M + c)

mini(cαi + g(αi)κ)

K∑
i=2

16α2

c2α2
i

+
κ2

mini(cαi + g(αi)κ)
.

Here (a) is obtained by using Theorem 3(a) and the fact that RTs ≤ RT .
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6.11. Proof of Theorem 4(a)

Proof of Theorem 4(a).

σRR
S (T ) =

E[CRR(T, r)]

mini{cαiT + g(αi)µT +Mαi}

=
RRR
S (T ) + mini{cαiT + g(αi)µT +Mαi}

mini{cαiT + g(αi)µT +Mαi}

≤ 1 +
RRR

S(T )

µi?T
.

By using Theorem 2 we have,

σRR
S (T ) ≥ 1 +

M

µi?

(
1

M
κ−cαi′−g(αi′ )κ

+ M
c

+ 2
− 1

T

)
pd.

For large T we get,

σRR
S (T ) > 1.

6.12. Proof of Theorem 4(b)

Proof of Theorem 4(b). By using Theorem 2 we have

σFTPL
S (T ) ≤ 1 +

1

µi?T
(16α2 + 1)

(
M

∆2
min

+
∑
i 6=i?

1

∆i

)
= 1 + O(1/T ).

6.13. Proof of Theorem 4(c)

Proof of Theorem 4(c). By using Theorem 2 we have RW-FTPL
S (T ) as a con-

stant and

σW-FTPL
S (T ) ≤ 1 +

RW-FTPL
S (T )

Tµi?
.

Therefore we get,
σW-FTPL
S (T ) ≤ 1 + O(1/T ).
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7. Appendix

Proof of Lemma 1. For i.i.d. stochastic arrivals, we have

RPS (T )

= EP,r[CP(T, r)]−min
i
{cαiT + g(αi)µT +Mαi}

= EP,r[CP(T, r)]−min
i
{Er[cαiT + g(αi)RT +Mαi]}

(a)

≤ EP,r[CP(T, r)]− Er[min
i
{cαiT + g(αi)RT +Mαi}]

= Er[RA(T, r)] ≤ sup
r

(
RPA(T, r)

)
= RPA(T ),

where (a) is obtained by Jensen’s inequality.

Lemma 15. If X is a random variable and E[f1(X)] = E[f2(X)] = m, then

m− E[min{f1(X), f2(X)}] =
1

2
E[|f1(X)− f2(X)|].

Proof.

min{X, Y } =
1

2
(X + Y )− 1

2
(|X − Y |)

=⇒ m−min{f1(X), f2(X)} = m− 1

2
(f1(X) + f2(X))

+
1

2
(|f1(X)− f2(X)|)

=⇒ m− E[min{f1(X), f2(X)}] =
1

2
E[|f1(X)− f2(X)|].

Lemma 16. If X ∼ Bin(T, p) then

1

2
E[|X − Tp|] ≥

√
Tp(1− p)
e
√

2π

[
1 +

1

12T + 1
− 1

12bTpc

− 1

12(T − bTpc − 1)

]
.

Proof. By using equation (1) from [28] we get

E[|X − Tp|]
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=2(1− p)T−bTpcpbTpc+1(bTpc+ 1)

(
T

bTp+ 1c

)
=2(1− p)T−bTpcpbTpc+1 T !

bTpc!(T − bTpc − 1)!

(a)

≥2(1− p)T−bTpcpbTpc+1 1

e
√

2π

T T+ 1
2 e

1
12T+1

bTpcbTpc+ 1
2 e

1
12bTpc

× 1

(T − bTpc − 1)T−bTpc−1+ 1
2 e

1
12(T−bTpc−1)

(b)

≥ 2

e
√

2π
(1− p)T−bTpcpbTpc+1 T T+ 1

2 e
1

12T+1

(Tp)bTpc+
1
2 e

1
12bTpc

× 1

(T − Tp)T−bTpc− 1
2 e

1
12(T−bTpc−1)

=
2
√
Tp(1− p)
e
√

2π
e

1
12T+1

− 1
12bTpc−

1
12(T−bTpc−1)

(c)

≥
2
√
Tp(1− p)
e
√

2π

[
1 +

1

12T + 1
− 1

12bTpc

− 1

12(T − bTpc − 1)

]
,

where (a) follows by using the result in [29] which is
√

2πnn+ 1
2 e−ne

1
12n+1 <

n! <
√

2πnn+ 1
2 e−ne

1
12n . (b) follows by using the fact that x − 1 ≤ bxc ≤ x.

(c) follows from the fact ex ≥ 1 + x.
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